Dictionary Learning on Grassmann Manifolds

Sparse representations have recently led to notable results in various visual recognition tasks. In a separate line of research, Riemannian manifolds have been shown useful for dealing with features and models that do not lie in Euclidean spaces. With the aim of building a bridge between the two realms, we address the problem of sparse coding and dictionary learning in Grassmann manifolds, i.e, the space of linear subspaces. To this end, we introduce algorithms for sparse coding and dictionary learning by embedding Grassmann manifolds into the space of symmetric matrices. Furthermore, to handle nonlinearity in data, we propose positive definite kernels on Grassmann manifolds and make use of them to perform coding and dictionary learning.

[1]  Jonathan H. Manton,et al.  A globally convergent numerical algorithm for computing the centre of mass on compact Lie groups , 2004, ICARCV 2004 8th Control, Automation, Robotics and Vision Conference, 2004..

[2]  Guillermo Sapiro,et al.  Discriminative learned dictionaries for local image analysis , 2008, 2008 IEEE Conference on Computer Vision and Pattern Recognition.

[3]  K.A. Gallivan,et al.  Efficient algorithms for inferences on Grassmann manifolds , 2004, IEEE Workshop on Statistical Signal Processing, 2003.

[4]  Paul M. Thompson,et al.  Segmentation of High Angular Resolution Diffusion MRI Using Sparse Riemannian Manifold Clustering , 2014, IEEE Transactions on Medical Imaging.

[5]  N. Ayache,et al.  Log‐Euclidean metrics for fast and simple calculus on diffusion tensors , 2006, Magnetic resonance in medicine.

[6]  Ravi Ramamoorthi,et al.  Analytic PCA Construction for Theoretical Analysis of Lighting Variability in Images of a Lambertian Object , 2002, IEEE Trans. Pattern Anal. Mach. Intell..

[7]  Allen Y. Yang,et al.  Robust Face Recognition via Sparse Representation , 2009, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[8]  M. Elad,et al.  $rm K$-SVD: An Algorithm for Designing Overcomplete Dictionaries for Sparse Representation , 2006, IEEE Transactions on Signal Processing.

[9]  Daniel D. Lee,et al.  Grassmann discriminant analysis: a unifying view on subspace-based learning , 2008, ICML '08.

[10]  Brian C. Lovell,et al.  Improved Image Set Classification via Joint Sparse Approximated Nearest Subspaces , 2013, 2013 IEEE Conference on Computer Vision and Pattern Recognition.

[11]  Bill Triggs,et al.  Histograms of oriented gradients for human detection , 2005, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05).

[12]  Mehrtash Tafazzoli Harandi,et al.  More about VLAD: A leap from Euclidean to Riemannian manifolds , 2015, 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[13]  H. Karcher Riemannian center of mass and mollifier smoothing , 1977 .

[14]  Hongdong Li,et al.  Kernel Methods on Riemannian Manifolds with Gaussian RBF Kernels , 2014, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[15]  Rama Chellappa,et al.  Unsupervised Adaptation Across Domain Shifts by Generating Intermediate Data Representations , 2014, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[16]  Rama Chellappa,et al.  Statistical Computations on Grassmann and Stiefel Manifolds for Image and Video-Based Recognition , 2011, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[17]  Yihong Gong,et al.  Linear spatial pyramid matching using sparse coding for image classification , 2009, CVPR.

[18]  Peter Meer,et al.  Nonlinear Mean Shift over Riemannian Manifolds , 2009, International Journal of Computer Vision.

[19]  Michael Werman,et al.  Affine Invariance Revisited , 2006, 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06).

[20]  Mehrtash Tafazzoli Harandi,et al.  Riemannian coding and dictionary learning: Kernels to the rescue , 2015, 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[21]  David J. Field,et al.  Emergence of simple-cell receptive field properties by learning a sparse code for natural images , 1996, Nature.

[22]  Yuan Shi,et al.  Geodesic flow kernel for unsupervised domain adaptation , 2012, 2012 IEEE Conference on Computer Vision and Pattern Recognition.

[23]  Rama Chellappa,et al.  Kernel Learning for Extrinsic Classification of Manifold Features , 2013, 2013 IEEE Conference on Computer Vision and Pattern Recognition.

[24]  R. Tibshirani Regression Shrinkage and Selection via the Lasso , 1996 .

[25]  René Vidal,et al.  Sparse Subspace Clustering: Algorithm, Theory, and Applications , 2012, IEEE transactions on pattern analysis and machine intelligence.

[26]  Michael Elad,et al.  Sparse Representation for Color Image Restoration , 2008, IEEE Transactions on Image Processing.

[27]  Nello Cristianini,et al.  Kernel Methods for Pattern Analysis , 2003, ICTAI.

[28]  Michael Elad,et al.  Sparse and Redundant Representations - From Theory to Applications in Signal and Image Processing , 2010 .

[29]  Guillermo Sapiro,et al.  Sparse Representation for Computer Vision and Pattern Recognition , 2010, Proceedings of the IEEE.

[30]  D. L. Donoho,et al.  Compressed sensing , 2006, IEEE Trans. Inf. Theory.

[31]  Ronen Basri,et al.  Lambertian Reflectance and Linear Subspaces , 2003, IEEE Trans. Pattern Anal. Mach. Intell..

[32]  John M. Lee Introduction to Smooth Manifolds , 2002 .

[33]  Brian C. Lovell,et al.  Extrinsic Methods for Coding and Dictionary Learning on Grassmann Manifolds , 2014, International Journal of Computer Vision.

[34]  Baba C. Vemuri,et al.  On A Nonlinear Generalization of Sparse Coding and Dictionary Learning , 2013, ICML.

[35]  Brian C. Lovell,et al.  Sparse Coding on Symmetric Positive Definite Manifolds Using Bregman Divergences , 2014, IEEE Transactions on Neural Networks and Learning Systems.

[36]  Emmanuel J. Candès,et al.  Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information , 2004, IEEE Transactions on Information Theory.

[37]  Bernhard Schölkopf,et al.  A Generalized Representer Theorem , 2001, COLT/EuroCOLT.

[38]  Lior Wolf,et al.  Learning over Sets using Kernel Principal Angles , 2003, J. Mach. Learn. Res..

[39]  C. Berg,et al.  Harmonic Analysis on Semigroups , 1984 .

[40]  Brian C. Lovell,et al.  Object tracking via non-Euclidean geometry: A Grassmann approach , 2014, IEEE Winter Conference on Applications of Computer Vision.

[41]  Yang Wang,et al.  Human Action Recognition by Semilatent Topic Models , 2009, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[42]  John B. Moore,et al.  Essential Matrix Estimation Using Gauss-Newton Iterations on a Manifold , 2007, International Journal of Computer Vision.

[43]  Hongdong Li,et al.  Expanding the Family of Grassmannian Kernels: An Embedding Perspective , 2014, ECCV.

[44]  Yihong Gong,et al.  Locality-constrained Linear Coding for image classification , 2010, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.