A construction scheme for linear and non-linear codes

A scheme for construcing linear and non-linear codes is presented. It constructs a code of block length 2n from two constituent codes of block length n. Codes so constructed can be either linear or non-linear even when the constituent codes are linear. The construction of many known linear and non-linear codes using this scheme will be shown.

[1]  N. J. A. Sloane,et al.  New family of single-error correcting codes , 1970, IEEE Trans. Inf. Theory.

[2]  Franco P. Preparata A Class of Optimum Nonlinear Double-Error-Correcting Codes , 1968, Inf. Control..

[3]  John P. Robinson,et al.  An Optimum Nonlinear Code , 1967, Inf. Control..

[4]  David Julin,et al.  Two improved block codes (Corresp.) , 1965, IEEE Trans. Inf. Theory.

[5]  D. Julin,et al.  Two improved block codes , 1965 .

[6]  Marcel J. E. Golay,et al.  Binary coding , 1954, Transactions of the IRE Professional Group on Information Theory.

[7]  Franco P. Preparata Weight and Distance Structure of Nordstrom-Robinson Quadratic Code , 1968, Inf. Control..

[8]  Tadao Kasami,et al.  New generalizations of the Reed-Muller codes-I: Primitive codes , 1968, IEEE Trans. Inf. Theory.