Nonlinear multichannel impedance inversion by total-variation regularization

ABSTRACTThe analysis of acoustic impedance (AI) allows for the mapping of seismic reflection data to lithology, and hence it plays an important role in the interpretation of poststack seismic data. The AI is obtainable from the inversion of the earth reflectivity series. Efficient deconvolution methods have been developed for recovering the reflectivity series from band-limited poststack data, which are multiple free, zero offset, and migrated. However, calculation of the AI from the reflectivity, when considering the spatial correlation of the impedance parameters, demands the solution of a constrained nonlinear inverse problem. Two efficient algorithms are proposed for solving the nonlinear impedance problem in multichannel form with the total-variation (TV) constraint to recover impedance maps with blocky structures. The first uses the continuous earth model for reflectivity, which allows linearizing the problem in the logarithm domain. The second uses the discrete (layered) earth model for reflectivit...

[1]  Xiaotao Wen,et al.  Impedance inversion based on basis pursuit decomposition and contourlet transform , 2014 .

[2]  A. Gholami Phase retrieval through regularization for seismic problems , 2014 .

[3]  Bai Junyu,et al.  Nonlinear hybrid optimization algorithm for seismic impedance inversion , 2014 .

[4]  Mauricio D. Sacchi,et al.  Fast 3D Blind Seismic Deconvolution via Constrained Total Variation and GCV , 2013, SIAM J. Imaging Sci..

[5]  T. Goto,et al.  A random layer-stripping method for seismic reflectivity inversion , 2013 .

[6]  Mauricio D. Sacchi,et al.  A Fast and Automatic Sparse Deconvolution in the Presence of Outliers , 2012, IEEE Transactions on Geoscience and Remote Sensing.

[7]  F. Moraes,et al.  Nonlinear impedance inversion for attenuating media , 2009 .

[8]  Tom Goldstein,et al.  The Split Bregman Method for L1-Regularized Problems , 2009, SIAM J. Imaging Sci..

[9]  Robert P. W. Duin,et al.  Gas chimney detection based on improving the performance of combined multilayer perceptron and support vector classifier , 2008 .

[10]  Mirko van der Baan,et al.  Robust wavelet estimation and blind deconvolution of noisy surface seismics , 2007 .

[11]  M. Foster Transmission Effects in the Continuous One-dimensional Seismic Model , 2007 .

[12]  B. Schroot,et al.  Surface and subsurface expressions of gas seepage to the seabed – examples from the Southern North Sea , 2005 .

[13]  S. M. Doherty,et al.  Seismic Data Analysis: Processing, Inversion, and Interpretation of Seismic Data , 2000 .

[14]  D. Oldenburg,et al.  Recovery of the acoustic impedance from reflection seismograms , 1983 .

[15]  Bjørn Ursin,et al.  Approximate computation of the acoustic impedance from seismic data , 1983 .

[16]  T. Ulrych,et al.  Autoregressive recovery of the acoustic impedance , 1983 .

[17]  D. Velis Stochastic sparse-spike deconvolution , 2008 .

[18]  Xingyao Yin,et al.  An Acoustic Impedance Inversion Approach Using Discrete Inversion Theory , 2004 .