A general modelling and control framework for electrostatically actuated mechanical systems

This paper presents a geometric framework for the stabilization and control of a general class of electrostatically actuated mechanical systems. Microelectromechanical systems (MEMS), such as micromirrors, are one motivating application for this work. There wavelengths of applications of interest lead to positioning requirements on the order of 40–100 nm. Furthermore, electrostatic actuation is poised to be the method of choice for the emerging field of nanoelectromechanical systems (NEMS), and the approach presented should be applicable there as well. The class of devices under study consists of a movable, rigid, grounded electrode, with a variety of allowable rotational and/or translational degrees of freedom, and a set of multiple, fixed, independently addressable, drive electrodes. A key contribution of this paper places general electrostatic forces in a framework suitable for passivity-based control. The configuration space of the movable body is assumed to have the structure of a simple mechanical system on a Lie group, and stabilizing static and dynamic feedback control laws are derived in terms of co-ordinate-independent geometric formulas. To obtain controllers for a specific device it is then necessary only to evaluate these formulas. Appropriate approximations may be applied to make the computations more tractable. The static output feedback controller requires only measurement of the charge and voltage on each drive electrode to provide almost-global stabilization of a desired feasible configuration, but performance is limited by the natural dynamics of the mechanical subsystem. Performance may be improved using dynamic output feedback, but additional information is needed, typically in the form of a model relating electrode capacitances to the system configuration. We demonstrate the controller computations on a representative MEMS, and validate performance using ANSYS simulations. Copyright © 2005 John Wiley & Sons, Ltd.

[1]  Hyo-Jin Nam,et al.  PZT actuated micromirror for fine-tracking mechanism of high-density optical data storage , 2001 .

[2]  G. Kovacs Micromachined Transducers Sourcebook , 1998 .

[3]  F. Larnaudie,et al.  Analytical Simulation of a 1D Single Crystal Silicon Electrostatic Micromirror , 1999 .

[4]  A. M. Fennimore,et al.  Rotational actuators based on carbon nanotubes , 2003, Nature.

[5]  H. Nathanson,et al.  The resonant gate transistor , 1967 .

[6]  S. Senturia Microsystem Design , 2000 .

[7]  O. Degani,et al.  A methodology and model for the pull-in parameters of electrostatic actuators , 2001 .

[8]  J. Pelesko,et al.  Nonlocal problems in MEMS device control , 2001 .

[9]  Jordan M. Berg,et al.  Almost-global tracking of simple mechanical systems on a general class of Lie Groups , 2006, IEEE Transactions on Automatic Control.

[10]  A. Dehe,et al.  Current drive methods to extend the range of travel of electrostatic microactuators beyond the voltage pull-in point , 2002 .

[11]  Suresh M. Joshi,et al.  Passivity-based control of nonlinear flexible multibody systems , 1995 .

[12]  Tobin A. Driscoll,et al.  Approximations in Canonical Electrostatic MEMS Models , 2004 .

[13]  A. Isidori,et al.  Passivity, feedback equivalence, and the global stabilization of minimum phase nonlinear systems , 1991 .

[14]  John H. Comtois,et al.  Surface-micromachined polysilicon MOEMS for adaptive optics , 1999 .

[15]  R. Leighton,et al.  Feynman Lectures on Physics , 1971 .

[16]  J M Florence,et al.  Coherent optical correlator using a deformable mirror device spatial light modulator in the Fourier plane. , 1988, Applied optics.

[17]  R. Feynman,et al.  The Feynman Lectures on Physics Addison-Wesley Reading , 1963 .

[18]  A. D. Lewis,et al.  Geometric control of mechanical systems : modeling, analysis, and design for simple mechanical control systems , 2005 .

[19]  A. D. Lewis,et al.  Geometric Control of Mechanical Systems , 2004, IEEE Transactions on Automatic Control.

[20]  Yong-Kweon Kim,et al.  Design and fabrication of 10×10 micro-spatial light modulator array for phase and amplitude modulation , 1999 .

[21]  Jacques Chaussy,et al.  A two-axis micromachined silicon actuator with micrometer range electrostatic actuation and picometer sensitive capacitive detection , 2000 .

[22]  Guchuan Zhu,et al.  On the differential flatness and control of electrostatically actuated MEMS , 2005, Proceedings of the 2005, American Control Conference, 2005..

[23]  J. Marsden,et al.  Introduction to mechanics and symmetry , 1994 .

[24]  John A. Pelesko,et al.  Mathematical Modeling of Electrostatic MEMS with Tailored Dielectric Properties , 2002, SIAM J. Appl. Math..

[25]  George G. Adams,et al.  A dynamic model, including contact bounce, of an electrostatically actuated microswitch , 2002 .

[26]  Romeo Ortega,et al.  Interconnection and Damping Assignment Passivity-Based Control: A Survey , 2004, Eur. J. Control.

[27]  Bernhard E. Boser,et al.  Charge control of parallel-plate, electrostatic actuators and the tip-in instability , 2003 .

[28]  R.W. Dutton,et al.  Electrostatic micromechanical actuator with extended range of travel , 2000, Journal of Microelectromechanical Systems.

[29]  D. H. S. Maithripala,et al.  Control of an Electrostatic MEMS Using Static and Dynamic Output Feedback , 2005 .

[30]  J. Seeger,et al.  Stabilization of electrostatically actuated mechanical devices , 1997, Proceedings of International Solid State Sensors and Actuators Conference (Transducers '97).

[31]  A. Oja,et al.  Increasing the Dynamic Range of a Micromechanical Moving-Plate Capacitor , 2001 .

[32]  Jerrold E. Marsden,et al.  Foundations of Mechanics, Second Edition , 1987 .

[33]  Pierre Rouchon,et al.  An intrinsic observer for a class of Lagrangian systems , 2003, IEEE Trans. Autom. Control..

[34]  P. B. Chu,et al.  MEMS: the path to large optical crossconnects , 2002 .

[35]  G. Fedder,et al.  Position control of parallel-plate microactuators for probe-based data storage , 2004, Journal of Microelectromechanical Systems.

[36]  Jordan M. Berg,et al.  Nano-precision control of micromirrors using output feedback , 2003, 42nd IEEE International Conference on Decision and Control (IEEE Cat. No.03CH37475).

[37]  D. H. S. Maithripala,et al.  An intrinsic observer for a class of simple mechanical systems on a Lie group , 2004, Proceedings of the 2004 American Control Conference.

[38]  David M. Bloom,et al.  Grating Light Valve: revolutionizing display technology , 1997, Electronic Imaging.

[39]  D. H. S. Maithripala,et al.  Nonlinear dynamic output feedback stabilization of electrostatically actuated MEMS , 2003, 42nd IEEE International Conference on Decision and Control (IEEE Cat. No.03CH37475).

[40]  Romeo Ortega,et al.  Putting energy back in control , 2001 .

[41]  A. Isidori Nonlinear Control Systems , 1985 .

[42]  Jordan M. Berg,et al.  Control of an Electrostatic Microelectromechanical System Using Static and Dynamic Output Feedback , 2005 .

[43]  C. Mastrangelo,et al.  Application of sliding mode control to electrostatically actuated two-axis gimbaled micromirrors , 2003, Proceedings of the 2003 American Control Conference, 2003..

[44]  M. Napoli,et al.  Characterization of electrostatically coupled microcantilevers , 2005, Journal of Microelectromechanical Systems.

[45]  David Elata,et al.  Analytical approach and numerical /spl alpha/-lines method for pull-in hyper-surface extraction of electrostatic actuators with multiple uncoupled voltage sources , 2003 .

[46]  A. Bloch,et al.  Nonholonomic Mechanics and Control , 2004, IEEE Transactions on Automatic Control.

[47]  Jordan M. Berg,et al.  Intrinsic Observer-Based Stabilization for Simple Mechanical Systems on Lie Groups , 2005, SIAM J. Control. Optim..

[48]  Ralph Abraham,et al.  Foundations Of Mechanics , 2019 .

[49]  Hiroyuki Fujita,et al.  A MEMS piggyback actuator for hard-disk drives , 2002 .