Tensor space-time coding for MIMO wireless communication systems = : Codificação tensorial espaço-temporal para sistemas de comunicação sem fio MIMO

Desde o crescente sucesso de sistemas moveis na decada de 90, novas tecnologias sem fio tem sido desenvolvidas a fim de suportar a crescente demanda de servicos de multimidia de alta qualidade e ainda flexivel para implantar novos servicos com baixas taxas de erro. Uma forma interessante de melhorar o desempenho de erro e de obter melhores taxas de transmissao consiste em combinar o emprego de varias diversidades com tecnicas de multiplo acesso no contexto de sistemas MIMO. A incorporacao de operacoes de sobreamostragem, espalhamento e multiplexacao, e diversidades adicionais em sistemas sem fio levam a sinais recebidos multidimensionais que, naturalmente, satisfazem modelos tensoriais. Esta tese propoe uma nova abordagem tensorial baseada em uma codificacao tensorial espaco-temporal (TST) para sistemas de comunicacao sem fio MIMO. Os sinais recebidos por multiplas antenas formam um tensor de quarta ordem que satisfaz um novo modelo tensorial, referido como PARATUCK-(2,4). A analise de desempenho e realizada para o sistema proposto TST e um recente sistema espaco-tempo-frequencial (STF), a qual permite derivar expressoes para o ganho maximo de diversidade atraves de um canal com desvanecimento plano. Propoe-se um sistema de transmissao baseado em codificacao TST com recursos de alocacao de antenas para sistemas MIMO com multiplos usuarios. Uma nova decomposicao tensorial e introduzida, denominada PARATUCK-(N1,N), e esta generaliza o modelo padrao PARATUCK-2 e nosso modelo PARATUCK-(2,4). A presente tese estabelece as condicoes de unicidade para o modelo PARATUCK-(N1,N). A partir desses resultados, a estimativa conjunta do simbolo e canal e assegurada para os sistemas TST e STF. Os receptores semi-cegos propostos para os dois sistemas baseiam-se no algoritmo do tipo minimos quadrados alternados ("Alternanting Least Squares", ALS) e no metodo de otimizacao Levenberg-Marquardt (LM). Um receptor baseado na estrutura do produto de Kronecker, denominado "Kronecker Least Squares" (KLS), tambem e proposto para ambos os sistemas. Resultados de simulacoes sao apresentados para ilustrar a eficiencia dos receptores propostos em termos de recuperacao de simbolo e a velocidade de convergencia quando comparados com outros metodos da literatura. Abstract

[1]  Gerard J. Foschini,et al.  Layered space-time architecture for wireless communication in a fading environment when using multi-element antennas , 1996, Bell Labs Technical Journal.

[2]  P. Comon,et al.  Generic and typical ranks of multi-way arrays , 2009 .

[3]  Lieven De Lathauwer,et al.  Decompositions of a Higher-Order Tensor in Block Terms - Part II: Definitions and Uniqueness , 2008, SIAM J. Matrix Anal. Appl..

[4]  Richard A. Harshman,et al.  Foundations of the PARAFAC procedure: Models and conditions for an "explanatory" multi-model factor analysis , 1970 .

[5]  David Tse,et al.  Fundamentals of Wireless Communication , 2005 .

[6]  L. Tucker,et al.  Some mathematical notes on three-mode factor analysis , 1966, Psychometrika.

[7]  Anzhong Wong,et al.  Novel Rotated Quasi-Orthogonal Space-Time Block Codes With the Fixed Nearest Neighbor Number , 2010, IEEE Signal Process. Lett..

[8]  Xue-Bin Liang,et al.  Orthogonal designs with maximal rates , 2003, IEEE Trans. Inf. Theory.

[9]  S. Talwar,et al.  Blind estimation of multiple digital signals transmitted over FIR channels , 1995, IEEE Signal Processing Letters.

[10]  Rasmus Bro,et al.  MULTI-WAY ANALYSIS IN THE FOOD INDUSTRY Models, Algorithms & Applications , 1998 .

[11]  Nikos D. Sidiropoulos,et al.  Kruskal's permutation lemma and the identification of CANDECOMP/PARAFAC and bilinear models with constant modulus constraints , 2004, IEEE Transactions on Signal Processing.

[12]  J. Chang,et al.  Analysis of individual differences in multidimensional scaling via an n-way generalization of “Eckart-Young” decomposition , 1970 .

[13]  A. Stegeman,et al.  On Kruskal's uniqueness condition for the Candecomp/Parafac decomposition , 2007 .

[14]  Siavash M. Alamouti,et al.  A simple transmit diversity technique for wireless communications , 1998, IEEE J. Sel. Areas Commun..

[15]  Helmut Bölcskei,et al.  An overview of MIMO communications - a key to gigabit wireless , 2004, Proceedings of the IEEE.

[16]  Emre Telatar,et al.  Capacity of Multi-antenna Gaussian Channels , 1999, Eur. Trans. Telecommun..

[17]  Alagan Anpalagan,et al.  On the Performance of a Constellation-rotated Time-spreaded Space-frequency Coding Scheme for 4 × 1 MISO OFDM Transceivers , 2011, Wirel. Pers. Commun..

[18]  Shuangzhe Liu,et al.  Matrix results on the Khatri-Rao and Tracy-Singh products , 1999 .

[19]  Gérard Favier,et al.  Blind joint identification and equalization of Wiener-Hammerstein communication channels using PARATUCK-2 tensor decomposition , 2007, 2007 15th European Signal Processing Conference.

[20]  Pierre Comon,et al.  Decomposition of quantics in sums of powers of linear forms , 1996, Signal Process..

[21]  J. Berge,et al.  Kruskal's polynomial for 2×2×2 arrays and a generalization to 2×n×n arrays , 1991 .

[22]  Sumit Roy,et al.  Rate-one space-frequency block codes with maximum diversity for MIMO-OFDM , 2005, IEEE Transactions on Wireless Communications.

[23]  J. Berge,et al.  Partial uniqueness in CANDECOMP/PARAFAC , 2004 .

[24]  G. Favier,et al.  Space-Time Multiplexing Codes: A Tensor Modeling Approach , 2006, 2006 IEEE 7th Workshop on Signal Processing Advances in Wireless Communications.

[25]  Dazhuan Xu,et al.  Performance Analysis of Space-Time Coded CDMA System Over Nakagami Fading Channels with Perfect and Imperfect CSI , 2010, Wireless Personal Communications.

[26]  F. L. Hitchcock The Expression of a Tensor or a Polyadic as a Sum of Products , 1927 .

[27]  Lizhong Zheng,et al.  Diversity and multiplexing: a fundamental tradeoff in multiple-antenna channels , 2003, IEEE Trans. Inf. Theory.

[28]  Nikos D. Sidiropoulos,et al.  Identifiability results for blind beamforming in incoherent multipath with small delay spread , 2001, IEEE Trans. Signal Process..

[29]  Lieven De Lathauwer,et al.  Blind Deconvolution of DS-CDMA Signals by Means of Decomposition in Rank-$(1,L,L)$ Terms , 2008, IEEE Transactions on Signal Processing.

[30]  Hamid Jafarkhani A quasi-orthogonal space-time block code , 2001, IEEE Trans. Commun..

[31]  A.J. Paulraj,et al.  Space-frequency codes for broadband fading channels , 2001, Proceedings. 2001 IEEE International Symposium on Information Theory (IEEE Cat. No.01CH37252).

[32]  Mohamed Oussama Damen,et al.  A construction of a space-time code based on number theory , 2002, IEEE Trans. Inf. Theory.

[33]  H. Law Research methods for multimode data analysis , 1984 .

[34]  Xiaodong Wang,et al.  Space-time code design in OFDM systems , 2000, Globecom '00 - IEEE. Global Telecommunications Conference. Conference Record (Cat. No.00CH37137).

[35]  Helmut Bölcskei,et al.  Space-frequency coded broadband OFDM systems , 2000, 2000 IEEE Wireless Communications and Networking Conference. Conference Record (Cat. No.00TH8540).

[36]  S. Mayrargue,et al.  A blind spatio-temporal equalizer for a radio-mobile channel using the constant modulus algorithm (CMA) , 1994, Proceedings of ICASSP '94. IEEE International Conference on Acoustics, Speech and Signal Processing.

[37]  Geoffrey Ye Li,et al.  Broadband MIMO-OFDM wireless communications , 2004, Proceedings of the IEEE.

[38]  Joos Vandewalle,et al.  Computation of the Canonical Decomposition by Means of a Simultaneous Generalized Schur Decomposition , 2005, SIAM J. Matrix Anal. Appl..

[39]  Harish Viswanathan,et al.  Multiple antennas in cellular CDMA systems: transmission, detection, and spectral efficiency , 2002, IEEE Trans. Wirel. Commun..

[40]  Vahid Tarokh,et al.  Space-time coded OFDM for high data-rate wireless communication over wideband channels , 1998, VTC '98. 48th IEEE Vehicular Technology Conference. Pathway to Global Wireless Revolution (Cat. No.98CH36151).

[41]  Nikos D. Sidiropoulos,et al.  Cramer-Rao lower bounds for low-rank decomposition of multidimensional arrays , 2001, IEEE Trans. Signal Process..

[42]  N.D. Sidiropoulos,et al.  Blind multiuser detection in W-CDMA systems with large delay spread , 2001, IEEE Signal Processing Letters.

[43]  André Lima Férrer de Almeida,et al.  A Constrained Factor Decomposition With Application to MIMO Antenna Systems , 2008, IEEE Transactions on Signal Processing.

[44]  J. Rhodes A concise proof of Kruskal’s theorem on tensor decomposition , 2009, 0901.1796.

[45]  Mohamed Oussama Damen,et al.  Universal space-time coding , 2003, IEEE Trans. Inf. Theory.

[46]  André Lima Férrer de Almeida,et al.  Space-time spreading-multiplexing for MIMO wireless communication systems using the PARATUCK-2 tensor model , 2009, Signal Process..

[47]  Lieven De Lathauwer,et al.  A Link between the Canonical Decomposition in Multilinear Algebra and Simultaneous Matrix Diagonalization , 2006, SIAM J. Matrix Anal. Appl..

[48]  Lieven De Lathauwer,et al.  Levenberg-Marquardt computation of the Block Factor Model for blind multi-user access in wireless communications , 2006, 2006 14th European Signal Processing Conference.

[49]  Georgios B. Giannakis,et al.  Space-time-frequency coded OFDM over frequency-selective fading channels , 2002, IEEE Trans. Signal Process..

[50]  David Brie,et al.  An uniqueness condition for the 4-way CANDECOMP/PARAFAC model with collinear loadings in three modes , 2011, 2011 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).

[51]  XIJING GUO,et al.  Uni-mode and Partial Uniqueness Conditions for CANDECOMP/PARAFAC of Three-Way Arrays with Linearly Dependent Loadings , 2012, SIAM J. Matrix Anal. Appl..

[52]  Eric Moulines,et al.  Subspace methods for the blind identification of multichannel FIR filters , 1994, Proceedings of ICASSP '94. IEEE International Conference on Acoustics, Speech and Signal Processing.

[53]  Hamid Jafarkhani Space-Time Coding: Space-time trellis codes , 2005 .

[54]  Norman C. Beaulieu,et al.  Linear threaded algebraic space-time constellations , 2003, IEEE Trans. Inf. Theory.

[55]  K.J.R. Liu,et al.  Towards maximum achievable diversity in space, time, and frequency: performance analysis and code design , 2005, IEEE Transactions on Wireless Communications.

[56]  Kaj Madsen,et al.  Methods for Non-Linear Least Squares Problems , 1999 .

[57]  André Lima Férrer de Almeida,et al.  Constrained Tucker-3 model for blind beamforming , 2009, Signal Process..

[58]  Arogyaswami Paulraj,et al.  An analytical constant modulus algorithm , 1996, IEEE Trans. Signal Process..

[59]  Wilhelm Keusgen On limits of wireless communications when using multiple dual-polarized antennas , 2003, 10th International Conference on Telecommunications, 2003. ICT 2003..

[60]  다벡아난드지.,et al.  Space time block coded transmit antenna diversity for wcdma , 1999 .

[61]  John G. Proakis,et al.  Digital Communications , 1983 .

[62]  Nikos D. Sidiropoulos,et al.  Khatri-Rao space-time codes , 2002, IEEE Trans. Signal Process..

[63]  Kenneth Levenberg A METHOD FOR THE SOLUTION OF CERTAIN NON – LINEAR PROBLEMS IN LEAST SQUARES , 1944 .

[64]  Richard A. Harshman,et al.  Determination and Proof of Minimum Uniqueness Conditions for PARAFAC1 , 1972 .

[65]  G. Turin The characteristic function of Hermitian quadratic forms in complex normal variables , 1960 .

[66]  André Lima Férrer de Almeida,et al.  Uniqueness Conditions for Constrained Three-Way Factor Decompositions with Linearly Dependent Loadings , 2009, SIAM J. Matrix Anal. Appl..

[67]  Abbas Jamalipour,et al.  Wireless communications , 2005, GLOBECOM '05. IEEE Global Telecommunications Conference, 2005..

[68]  K. J. Ray Liu,et al.  Full-rate full-diversity space-frequency codes with optimum coding advantage , 2005, IEEE Transactions on Information Theory.

[69]  J. Berge,et al.  On uniqueness in candecomp/parafac , 2002 .

[70]  Lizhong Zheng,et al.  Diversity-multiplexing tradeoff in multiple-access channels , 2004, IEEE Transactions on Information Theory.

[71]  André Lima Férrer de Almeida,et al.  Multiuser MIMO system using block space-time spreading and tensor modeling , 2008, Signal Process..

[72]  Alwin Stegeman,et al.  On Uniqueness of the nth Order Tensor Decomposition into Rank-1 Terms with Linear Independence in One Mode , 2010, SIAM J. Matrix Anal. Appl..

[73]  André Lima Férrer de Almeida,et al.  Constrained Tensor Modeling Approach to Blind Multiple-Antenna CDMA Schemes , 2008, IEEE Transactions on Signal Processing.

[74]  Chau Yuen,et al.  Quasi-orthogonal STBC with minimum decoding complexity , 2005, IEEE Transactions on Wireless Communications.

[75]  Nikos D. Sidiropoulos,et al.  Blind PARAFAC receivers for DS-CDMA systems , 2000, IEEE Trans. Signal Process..

[76]  Babak Hassibi,et al.  High-rate codes that are linear in space and time , 2002, IEEE Trans. Inf. Theory.

[77]  J. Kruskal Three-way arrays: rank and uniqueness of trilinear decompositions, with application to arithmetic complexity and statistics , 1977 .

[78]  Khaled Ben Letaief,et al.  Space-frequency-time coded OFDM for broadband wireless communications , 2001, GLOBECOM'01. IEEE Global Telecommunications Conference (Cat. No.01CH37270).

[79]  R. Harshman,et al.  Modeling multi‐way data with linearly dependent loadings , 2009 .

[80]  André Lima Férrer de Almeida,et al.  PARAFAC-based unified tensor modeling for wireless communication systems with application to blind multiuser equalization , 2007, Signal Process..

[81]  A. Robert Calderbank,et al.  Space-Time block codes from orthogonal designs , 1999, IEEE Trans. Inf. Theory.

[82]  A. de Baynast,et al.  Blind PARAFAC receivers for multiple access-multiple antenna systems , 2003, 2003 IEEE 58th Vehicular Technology Conference. VTC 2003-Fall (IEEE Cat. No.03CH37484).

[83]  Xiaodong Wang,et al.  An Analysis of the MIMO–SDMA Channel With Space–Time Orthogonal and Quasi-Orthogonal User Transmissions and Efficient Successive Cancellation Decoders , 2008, IEEE Transactions on Information Theory.

[84]  Constantinos B. Papadias,et al.  Improved quasi-orthogonal codes through constellation rotation , 2002, 2002 IEEE International Conference on Acoustics, Speech, and Signal Processing.

[85]  Rasmus Bro,et al.  Recent developments in CANDECOMP/PARAFAC algorithms: a critical review , 2003 .

[86]  C. R. Rao,et al.  SOLUTIONS TO SOME FUNCTIONAL EQUATIONS AND THEIR APPLICATIONS TO CHARACTERIZATION OF PROBABILITY DISTRIBUTIONS , 2016 .

[87]  André Lima Férrer de Almeida,et al.  Space-Time-Frequency (STF) MIMO Communication Systems With Blind Receiver Based on a Generalized PARATUCK2 Model , 2013, IEEE Transactions on Signal Processing.

[88]  Thomas L. Marzetta,et al.  A transmitter diversity scheme for wideband CDMA systems based on space-time spreading , 2001, IEEE J. Sel. Areas Commun..

[89]  Ran Gozali,et al.  Space-Time Codes for High Data Rate Wireless Communications , 2002 .

[90]  Moe Z. Win,et al.  Space-time-frequency (STF) coding for MIMO-OFDM systems , 2002, IEEE Communications Letters.

[91]  Lieven De Lathauwer,et al.  A Block Component Model-Based Blind DS-CDMA Receiver , 2008, IEEE Transactions on Signal Processing.

[92]  Claude Oestges,et al.  MIMO Wireless Communications: From Real-World Propagation to Space-Time Code Design , 2007 .

[93]  Rick S. Blum,et al.  Improved space-time coding for MIMO-OFDM wireless communications , 2001, IEEE Trans. Commun..

[94]  N. Sidiropoulos,et al.  On the uniqueness of multilinear decomposition of N‐way arrays , 2000 .

[95]  R. Harshman,et al.  Uniqueness proof for a family of models sharing features of Tucker's three-mode factor analysis and PARAFAC/candecomp , 1996 .

[96]  Joe Brewer,et al.  Kronecker products and matrix calculus in system theory , 1978 .

[97]  Rasmus Bro,et al.  A comparison of algorithms for fitting the PARAFAC model , 2006, Comput. Stat. Data Anal..

[98]  Davinder S. Saini,et al.  Space–Time/Space–Frequency/Space–Time–Frequency Block Coded MIMO-OFDM System with Equalizers in Quasi Static Mobile Radio Channels Using Higher Tap Order , 2013, Wirel. Pers. Commun..

[99]  A. Stegeman On uniqueness conditions for Candecomp/Parafac and Indscal with full column rank in one mode , 2009 .

[100]  Lieven De Lathauwer,et al.  Decompositions of a Higher-Order Tensor in Block Terms - Part I: Lemmas for Partitioned Matrices , 2008, SIAM J. Matrix Anal. Appl..

[101]  Nikos D. Sidiropoulos,et al.  Parallel factor analysis in sensor array processing , 2000, IEEE Trans. Signal Process..

[102]  C. R. Rao,et al.  Generalized Inverse of Matrices and its Applications , 1972 .