Mitocentricity.

[1]  L. Guddat,et al.  Structure of the human ATP synthase. , 2023, Molecular cell.

[2]  S. Lipton,et al.  Apoptotic cell death in disease—Current understanding of the NCCD 2023 , 2023, Cell Death & Differentiation.

[3]  V. Skulachev,et al.  Mitochondrion-targeted antioxidant SkQ1 prevents rapid animal death caused by highly diverse shocks , 2023, Scientific Reports.

[4]  H. Bayır,et al.  Oxoglutarate dehydrogenase complex controls glutamate-mediated neuronal death , 2023, Redox biology.

[5]  P. Pohl,et al.  Tutorial for Stopped-Flow Water Flux Measurements: Why a Report about “Ultrafast Water Permeation through Nanochannels with a Densely Fluorous Interior Surface” Is Flawed , 2023, Biomolecules.

[6]  O. Shirihai,et al.  Mitochondrial signal transduction , 2022, Cell metabolism.

[7]  P. Pohl,et al.  Trapped pore waters in the open proton channel HV1 , 2022, bioRxiv.

[8]  R. de Cabo,et al.  ATP Synthase K+- and H+-fluxes Drive ATP Synthesis and Enable Mitochondrial K+-"Uniporter" Function: II. Ion and ATP Synthase Flux Regulation. , 2022, Function.

[9]  R. de Cabo,et al.  ATP Synthase K+- and H+-Fluxes Drive ATP Synthesis and Enable Mitochondrial K+-"Uniporter" Function: I. Characterization of Ion Fluxes. , 2021, Function.

[10]  P. Pohl,et al.  The energetic barrier to single-file water flow through narrow channels , 2021, Biophysical Reviews.

[11]  L. Sazanov,et al.  The assembly, regulation and function of the mitochondrial respiratory chain , 2021, Nature Reviews Molecular Cell Biology.

[12]  S. Cortassa,et al.  Mitochondrial Ca2+, redox environment and ROS emission in heart failure: Two sides of the same coin? , 2020, Journal of molecular and cellular cardiology.

[13]  Y. Antonenko,et al.  Bicarbonate suppresses mitochondrial membrane depolarization induced by conventional uncouplers. , 2020, Biochemical and biophysical research communications.

[14]  Robert R. Ishmukhametov,et al.  Cryo-EM structures provide insight into how E. coli F1Fo ATP synthase accommodates symmetry mismatch , 2020, Nature Communications.

[15]  V. Skulachev,et al.  Mild depolarization of the inner mitochondrial membrane is a crucial component of an anti-aging program , 2020, Proceedings of the National Academy of Sciences.

[16]  Jeanne M. Danes,et al.  Mitochondrial Superoxide Dismutase: What the established, the intriguing, and the novel reveal about a key cellular redox switch. , 2020, Antioxidants & redox signaling.

[17]  Anastasios D. Tsaousis,et al.  On the Origin of Iron/Sulfur Cluster Biosynthesis in Eukaryotes , 2019, Front. Microbiol..

[18]  W. Kühlbrandt,et al.  Dimers of mitochondrial ATP synthase induce membrane curvature and self-assemble into rows , 2019, Proceedings of the National Academy of Sciences.

[19]  D. Zorov,et al.  Lessons from the Discovery of Mitochondrial Fragmentation (Fission): A Review and Update , 2019, Cells.

[20]  L. Ferrucci,et al.  Inflammageing: chronic inflammation in ageing, cardiovascular disease, and frailty , 2018, Nature Reviews Cardiology.

[21]  J. Lukeš,et al.  Fe–S cluster assembly in the supergroup Excavata , 2018, JBIC Journal of Biological Inorganic Chemistry.

[22]  S. Sollott,et al.  Mitochondrial membrane potential. , 2017, Analytical biochemistry.

[23]  R. Ryan,et al.  Cardiolipin and mitochondrial cristae organization. , 2017, Biochimica et biophysica acta. Biomembranes.

[24]  C. Franceschi,et al.  Inflammaging and ‘Garb-aging’ , 2017, Trends in Endocrinology & Metabolism.

[25]  D. Zorov,et al.  Mitochondrial Aging: Is There a Mitochondrial Clock? , 2016, The journals of gerontology. Series A, Biological sciences and medical sciences.

[26]  Jianlin Lei,et al.  The architecture of the mammalian respirasome , 2016, Nature.

[27]  J. A. Letts,et al.  The architecture of respiratory supercomplexes , 2016, Nature.

[28]  V. Zinchenko,et al.  The mitochondrion as a key regulator of ischaemic tolerance and injury. , 2014, Heart, lung & circulation.

[29]  S. Sollott,et al.  Mitochondrial reactive oxygen species (ROS) and ROS-induced ROS release. , 2014, Physiological reviews.

[30]  C. Franceschi,et al.  Circulating mitochondrial DNA increases with age and is a familiar trait: Implications for “inflamm‐aging” , 2014, European journal of immunology.

[31]  E. Takahashi,et al.  Anaerobic respiration sustains mitochondrial membrane potential in a prolyl hydroxylase pathway-activated cancer cell line in a hypoxic microenvironment. , 2014, American journal of physiology. Cell physiology.

[32]  W. Miller Steroid hormone synthesis in mitochondria , 2013, Molecular and Cellular Endocrinology.

[33]  F. Sutterwala,et al.  Mitochondrial cardiolipin is required for Nlrp3 inflammasome activation. , 2013, Immunity.

[34]  V. Skulachev,et al.  Protective effect of mitochondria-targeted antioxidants in an acute bacterial infection , 2013, Proceedings of the National Academy of Sciences.

[35]  N. MacAulay,et al.  Transport of water against its concentration gradient: fact or fiction? , 2012 .

[36]  Moshe Arditi,et al.  Oxidized mitochondrial DNA activates the NLRP3 inflammasome during apoptosis. , 2012, Immunity.

[37]  V. Anisimov,et al.  Mitochondrial-targeted plastoquinone derivatives. Effect on senescence and acute age-related pathologies. , 2011, Current drug targets.

[38]  R. Youle,et al.  Mitochondrial membrane potential regulates PINK1 import and proteolytic destabilization by PARL , 2010, The Journal of cell biology.

[39]  N. Hatzakis,et al.  A unifying mechanism accounts for sensing of membrane curvature by BAR domains, amphipathic helices and membrane-anchored proteins. , 2010, Seminars in cell & developmental biology.

[40]  G. Drin,et al.  Amphipathic helices and membrane curvature , 2010, FEBS letters.

[41]  U. Gether,et al.  BAR domains, amphipathic helices and membrane‐anchored proteins use the same mechanism to sense membrane curvature , 2010, FEBS letters.

[42]  E. Lakatta,et al.  Matching ATP supply and demand in mammalian heart , 2010, Annals of the New York Academy of Sciences.

[43]  W. Junger,et al.  Circulating Mitochondrial DAMPs Cause Inflammatory Responses to Injury , 2009, Nature.

[44]  V. Skulachev,et al.  Penetrating cation/fatty acid anion pair as a mitochondria-targeted protonophore , 2009, Proceedings of the National Academy of Sciences.

[45]  S. Sollott,et al.  Regulation and pharmacology of the mitochondrial permeability transition pore. , 2009, Cardiovascular research.

[46]  P. Kochanek,et al.  Cytochrome c/cardiolipin relations in mitochondria: a kiss of death. , 2009, Free radical biology & medicine.

[47]  R. Acín-Pérez,et al.  Cyclic AMP produced inside mitochondria regulates oxidative phosphorylation. , 2009, Cell metabolism.

[48]  M. Klingenberg The ADP and ATP transport in mitochondria and its carrier. , 2008, Biochimica et biophysica acta.

[49]  I. Pevzner,et al.  Interrelations of mitochondrial fragmentation and cell death under ischemia/reoxygenation and UV‐irradiation: Protective effects of SkQ1, lithium ions and insulin , 2008, FEBS letters.

[50]  D. Mokranjac,et al.  Energetics of protein translocation into mitochondria. , 2008, Biochimica et biophysica acta.

[51]  Min Wu,et al.  Fission and selective fusion govern mitochondrial segregation and elimination by autophagy , 2008, The EMBO journal.

[52]  G. Salvesen,et al.  The apoptosome: signalling platform of cell death , 2007, Nature Reviews Molecular Cell Biology.

[53]  B. Kristal,et al.  Comparative kinetic analysis reveals that inducer-specific ion release precedes the mitochondrial permeability transition. , 2005, Biochimica et biophysica acta.

[54]  D. Dean,et al.  Structure, function, and formation of biological iron-sulfur clusters. , 2005, Annual review of biochemistry.

[55]  V. Skulachev How to Clean the Dirtiest Place in the Cell: Cationic Antioxidants as Intramitochondrial ROS Scavengers , 2005, IUBMB life.

[56]  D. Zorov,et al.  Reactive oxygen and nitrogen species: Friends or foes? , 2005, Biochemistry (Moscow).

[57]  D. Schreiner,et al.  The intra-mitochondrial cytochrome c distribution varies correlated to the formation of a complex between VDAC and the adenine nucleotide translocase: this affects Bax-dependent cytochrome c release. , 2004, Biochimica et biophysica acta.

[58]  B. Schmidt,et al.  A discrete water exit pathway in the membrane protein cytochrome c oxidase , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[59]  V. Skulachev,et al.  Cytochrome c, an ideal antioxidant. , 2003, Biochemical Society transactions.

[60]  V. Skulachev Programmed Death Phenomena: From Organelle to Organism , 2002, Annals of the New York Academy of Sciences.

[61]  Elias S. J. Arnér,et al.  Physiological functions of thioredoxin and thioredoxin reductase. , 2000, European journal of biochemistry.

[62]  C. Franceschi,et al.  Inflamm‐aging: An Evolutionary Perspective on Immunosenescence , 2000 .

[63]  J. Weinberg,et al.  Mitochondrial dysfunction during hypoxia/reoxygenation and its correction by anaerobic metabolism of citric acid cycle intermediates. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[64]  T. Kuwana,et al.  The Pro-Apoptotic Proteins, Bid and Bax, Cause a Limited Permeabilization of the Mitochondrial Outer Membrane That Is Enhanced by Cytosol , 1999, The Journal of cell biology.

[65]  D. Loo,et al.  Passive water and ion transport by cotransporters , 1999, The Journal of physiology.

[66]  V. Skulachev Why are mitochondria involved in apoptosis? Permeability transition pores and apoptosis as selective mechanisms to eliminate superoxide‐producing mitochondria and cell , 1996, FEBS letters.

[67]  R. Uzbekov,et al.  Neurotoxic glutamate treatment of cultured cerebellar granule cells induces Ca2+‐dependent collapse of mitochondrial membrane potential and ultrastructural alterations of mitochondria , 1996, FEBS letters.

[68]  D. Zorov,et al.  Mitochondrial damage as a source of diseases and aging: a strategy of how to fight these. , 1996, Biochimica et biophysica acta.

[69]  Edwards The O-2 Generating NADPH Oxidase of Phagocytes: Structure and Methods of Detection , 1996, Methods.

[70]  S. Kaplan,et al.  A Sensory Transducer Homologous to the Mammalian Peripheral-type Benzodiazepine Receptor Regulates Photosynthetic Membrane Complex Formation in Rhodobacter sphaeroides 2.4.1 (*) , 1995, The Journal of Biological Chemistry.

[71]  M. Zoratti,et al.  The mitochondrial permeability transition. , 1995, Biochimica et biophysica acta.

[72]  M. Stern,et al.  Mitochondrial membrane potential in single living adult rat cardiac myocytes exposed to anoxia or metabolic inhibition. , 1995, The Journal of physiology.

[73]  Y. Antonenko,et al.  Calcium modulation of mitochondrial inner membrane channel activity. , 1991, Biochemical and biophysical research communications.

[74]  D. Zorov,et al.  Effect of ADP/ATP antiporter conformational state on the suppression of the nonspecific permeability of the inner mitochondrial membrane by cyclosporine A , 1990, FEBS letters.

[75]  D. Zorov,et al.  Effect of cyclosporine A and oligomycin on non‐specific permeability of the inner mitochondrial membrane , 1990, FEBS letters.

[76]  V. Skulachev,et al.  The ATP/ADP-antiporter is involved in the uncoupling effect of fatty acids on mitochondria. , 1989, European journal of biochemistry.

[77]  N. Calcaterra,et al.  Steady‐state kinetics of F1‐ATPase , 1985, FEBS letters.

[78]  D. Zorov,et al.  Diazepam inhibits cell respiration and induces fragmentation of mitochondrial reticulum , 1983, FEBS letters.

[79]  P. Srere The structure of the mitochondrial inner membrane-matrix compartment , 1982 .

[80]  A. Fulton,et al.  How crowded is the cytoplasm? , 1982, Cell.

[81]  P. Srere The infrastructure of the mitochondrial matrix , 1980 .

[82]  R. Haworth,et al.  The Ca2+-induced membrane transition in mitochondria. II. Nature of the Ca2+ trigger site. , 1979, Archives of biochemistry and biophysics.

[83]  R. Haworth,et al.  The Ca2+-induced membrane transition in mitochondria. III. Transitional Ca2+ release. , 1979, Archives of biochemistry and biophysics.

[84]  V. Skulachev,et al.  Mitochondrial framework (reticulum mitochondriale) in rat diaphragm muscle. , 1978, Biochimica et biophysica acta.

[85]  G. Buckberg,et al.  The myocardial supply:demand ratio--a critical review. , 1978, The American journal of cardiology.

[86]  P. Ponka,et al.  Haem synthesis and iron uptake by reticulocytes. , 1974, British journal of haematology.

[87]  B Mattiasson,et al.  An immobilized three-enzyme system: a model for microenvironmental compartmentation in mitochondria. , 1973, Proceedings of the National Academy of Sciences of the United States of America.

[88]  V. Skulachev,et al.  The effect of oncotic pressure on heart muscle mitochondria. , 1972, Biochimica et biophysica acta.

[89]  B Chance,et al.  The cellular production of hydrogen peroxide. , 1972, The Biochemical journal.

[90]  G. Bahr,et al.  Matrix structure of critical-point dried mitochondria. , 1970, Experimental cell research.

[91]  E A Liberman,et al.  Conversion of biomembrane-produced energy into electric form. II. Intact mitochondria. , 1970, Biochimica et biophysica acta.

[92]  E. C. Slater,et al.  Studies on succinate dehydrogenase. VI. Inhibition by monocarboxylic acids. , 1970, Biochimica et biophysica acta.

[93]  W. Drost-Hansen STRUCTURE OF WATER NEAR SOLID INTERFACES , 1969 .

[94]  V. Skulachev,et al.  Mechanism of Coupling of Oxidative Phosphorylation and the Membrane Potential of Mitochondria , 1969, Nature.

[95]  L. Packer,et al.  Optical rotary dispersion and circular dichroism studies on mitochondria: correlation of ultrastructure and metabolic state with molecular conformational changes. , 1968, Archives of biochemistry and biophysics.

[96]  C. Hackenbrock Chemical and physical fixation of isolated mitochondria in low-energy and high-energy states. , 1968, Proceedings of the National Academy of Sciences of the United States of America.

[97]  R. Harris,et al.  Conformational basis of energy transformations in membrane systems. 3. Configurational changes in the mitochondrial inner membrane induced by changes in functional states. , 1968, Archives of biochemistry and biophysics.

[98]  R. Harris,et al.  The conformational basis of energy conservation in membrane systems. II. Correlation between conformational change and functional states. , 1968, Proceedings of the National Academy of Sciences of the United States of America.

[99]  A. K. Solomon,et al.  Osmotic Properties of Mitochondria , 1967, The Journal of general physiology.

[100]  C. Hackenbrock ULTRASTRUCTURAL BASES FOR METABOLICALLY LINKED MECHANICAL ACTIVITY IN MITOCHONDRIA , 1966, The Journal of cell biology.

[101]  L. Packer SIZE AND SHAPE TRANSFORMATIONS CORRELATED WITH OXIDATIVE PHOSPHORYLATION IN MITOCHONDRIA. I. SWELLING-SHRINKAGE MECHANISMS IN INTACT MITOCHONDRIA. , 1963 .

[102]  S. A. Neifakh,et al.  Actomyosin-like Protein in Mitochondria of the Mouse Liver , 1963, Nature.

[103]  T. Ohnishi Extraction of actin- and myosin-like proteins from erythrocyte membrane. , 1962, Journal of biochemistry.

[104]  A. Lehninger Water uptake and extrusion by mitochondria in relation to oxidative phosphorylation. , 1962, Physiological reviews.

[105]  D. Harman Aging: a theory based on free radical and radiation chemistry. , 1956, Journal of gerontology.

[106]  W. O. Fenn,et al.  Oxygen poisoning and x-irradiation: a mechanism in common. , 1954, Science.

[107]  W. Dröge Free radicals in the physiological control of cell function. , 2002, Physiological reviews.

[108]  J. Joseph,et al.  Oxidative damage caused by free radicals produced during catecholamine autoxidation: protective effects of O-methylation and melatonin. , 1996, Free radical biology & medicine.

[109]  G. Wächtershäuser,et al.  Evolution of the first metabolic cycles. , 1990, Proceedings of the National Academy of Sciences of the United States of America.

[110]  P. Srere Protein crystals as a model for mitochondrial matrix proteins , 1981 .

[111]  I. Kuntz,et al.  The properties of water in biological systems. , 1974, Annual review of biophysics and bioengineering.

[112]  J. Mead LIPID METABOLISM. , 1963, Annual review of biochemistry.