Spatially convergent GPS kinematic positioning

Abstract.It is a known fact that obtaining accurate GPS carrier-phase measurements involves fixed, unknown whole-cycle ambiguity parameters. As the use of cosine functions to eliminate any double-difference integer ambiguities causes spatial ambiguity problems, both reasonably approximated positions and wavelength-dependent convergence ranges are of the utmost importance. Differential GPS-based position solutions are first smoothed to create a polynomial trajectory, leading to less variable position approximations. Long-wavelength wide-lane phase combinations will then be utilized to facilitate convergent GPS positioning, on a stage-by-stage basis. Although double-difference ionospheric path delays are often interpreted as nuisance parameters, they can be obtained when the respective cosines of the original L1 and L2 carrier phases undergo a simultaneous least-squares estimation. In particular, quadratic forms of the estimated phase residuals will be linked with hypothesis testing to allow for a meaningful statistical inference. Some low-dynamics experiments are then performed to prove the feasibility of the proposed hierarchical positioning concept.

[1]  Clyde C. Goad,et al.  A New Approach to Precision Airborne GPS Positioning for Photogrammetry , 1997 .

[2]  Gerald L. Mader,et al.  Rapid static and kinematic global positioning system solutions using the ambiguity function technique , 1992 .

[3]  Y. Bock,et al.  Global Positioning System Network analysis with phase ambiguity resolution applied to crustal deformation studies in California , 1989 .

[4]  Richard B. Langley,et al.  Analysis of tropospheric delay prediction models: comparisons with ray-tracing and implications for GPS relative positioning , 1991 .

[5]  B. Hofmann-Wellenhof,et al.  Global Positioning System , 1992 .

[6]  Karl-Rudolf Koch,et al.  Parameter estimation and hypothesis testing in linear models , 1988 .

[7]  D. Zhong,et al.  Robust estimation and optimal selection of polynomial parameters for the interpolation of GPS geoid heights , 1997 .

[8]  Gerhard Beutler,et al.  Rapid static positioning based on the fast ambiguity resolution approach , 1990 .

[9]  Edward M. Mikhail,et al.  Observations And Least Squares , 1983 .

[10]  Paul Cross,et al.  Performance evaluation of GPS single-epoch on-the-fly ambiguity resolution , 1997 .

[11]  Joz Wu,et al.  Cosine Functions of GPS Carrier Phases for Parameter Estimation , 1997 .

[12]  A. Leick GPS satellite surveying , 1990 .

[13]  Ahmed El-Mowafy,et al.  Epoch-by-Epoch Ambiguity Resolution for Real-Time Attitude Determination Using a GPS Multiantenna System , 1995 .

[14]  Charles R. Schwarz,et al.  Blunder Detection and Data Snooping in LS and Robust Adjustments , 1993 .

[15]  Frank van Graas,et al.  High-Accuracy Differential Positioning for Satellite-Based Systems Without Using Code-Phase Measurements1 , 1995 .

[16]  Martin Schmitz,et al.  A NEW APPROACH FOR FIELD CALIBRATION OF ABSOLUTE GPS ANTENNA PHASE CENTER VARIATIONS , 1997 .

[17]  Peter Teunissen,et al.  GPS Observation Equations and Positioning Concepts , 1998 .

[18]  Jinling Wang,et al.  A discrimination test procedure for ambiguity resolution on-the-fly , 1998 .

[19]  Jaewoo Jung,et al.  Civilian GPS: The Benefits of Three Frequencies , 2000, GPS Solutions.

[20]  Bob E. Schutz,et al.  On the structure of geometric positioning information in GPS measurements , 1996 .

[21]  Chris Rizos,et al.  Improving the computational efficiency of the ambiguity function algorithm , 1996 .

[22]  G. Lachapelle,et al.  High‐precision GPS navigation with emphasis on carrier‐phase ambiguity resolution , 1992 .

[23]  Richard Barker,et al.  REAL-TIME ON-THE-FLY KINEMATIC GPS SYSTEM RESULTS , 1994 .

[24]  Benjamin W. Remondi,et al.  Pseudo-Kinematic GPS Results Using the Ambiguity Function Method , 1991 .