Isolation of a Rhodobacter sphaeroides mutant with enhanced hydrogen production capacity from transposon mutagenesis by NH4+ nitrogen resource

[1]  Lei Wu,et al.  Improved ammonium tolerance and hydrogen production in nifA mutant strains of Rhodopseudomonas palustris , 2016 .

[2]  Global transcriptional regulator TrmB family members in prokaryotes , 2016, Journal of Microbiology.

[3]  P. Hallenbeck,et al.  Recent advances in hydrogen production by photosynthetic bacteria , 2016 .

[4]  F. Tabita Molecular Regulation of Photosynthetic Carbon Dioxide Fixation in Nonsulfur Purple Bacteria , 2015 .

[5]  F. Tabita,et al.  CbbR, the Master Regulator for Microbial Carbon Dioxide Fixation , 2015, Journal of bacteriology.

[6]  Jie Yan,et al.  Transcriptional Repressor TrmBL2 from Thermococcus kodakarensis Forms Filamentous Nucleoprotein Structures and Competes with Histones for DNA Binding in a Salt- and DNA Supercoiling-dependent Manner* , 2015, Journal of Biological Chemistry.

[7]  Liejin Guo,et al.  Remarkable enhancement on hydrogen production performance of Rhodobacter sphaeroides by disrupting spbA and hupSL genes , 2014 .

[8]  Xueqing Wang,et al.  A newly isolated Rhodobacter sphaeroides HY01 with high hydrogen production performance , 2014 .

[9]  Amino Acid Residues of RegA Important for Interactions with the CbbR-DNA Complex of Rhodobacter sphaeroides , 2014, Journal of bacteriology.

[10]  Mark Gomelsky,et al.  Metabolic engineering of Rhodobacter sphaeroides for improved hydrogen production , 2014 .

[11]  Liejin Guo,et al.  Enhanced photosynthetic hydrogen production performance of Rhodobacter capsulatus by deactivating CBB cycle and cytochrome c oxidase , 2014 .

[12]  J. McKinlay,et al.  A Rhodopseudomonas palustris nifA* mutant produces H2 from NH4+-containing vegetable wastes , 2012 .

[13]  Dong-Hoon Kim,et al.  Hydrogenases for biological hydrogen production. , 2011, Bioresource technology.

[14]  T. Donohue,et al.  Pathways Involved in Reductant Distribution during Photobiological H2 Production by Rhodobacter sphaeroides , 2011, Applied and Environmental Microbiology.

[15]  N. Ren,et al.  Enhanced bio-hydrogen production by the combination of dark- and photo-fermentation in batch culture. , 2010, Bioresource technology.

[16]  Tong Liu,et al.  Derepressive effect of NH  4+ on hydrogen production by deleting the glnA1 gene in Rhodobacter sphaeroides , 2010, Biotechnology and bioengineering.

[17]  Fei Liu,et al.  Enhanced bio-hydrogen production from corncob by a two-step process: dark- and photo-fermentation. , 2010, Bioresource technology.

[18]  Jo-Shu Chang,et al.  Improved phototrophic H2 production with Rhodopseudomonas palustris WP3-5 using acetate and butyrate as dual carbon substrates. , 2008, Bioresource technology.

[19]  Mi‐Sun Kim,et al.  Molecular hydrogen production by nitrogenase of Rhodobacter sphaeroides and by Fe-only hydrogenase of Rhodospirillum rubrum , 2008 .

[20]  Jo‐Shu Chang,et al.  Enhancing phototrophic hydrogen production of Rhodopseudomonas palustris via statistical experimental design , 2007 .

[21]  F. Daldal,et al.  sacB–5-Fluoroorotic Acid–pyrE-Based Bidirectional Selection for Integration of Unmarked Alleles into the Chromosome of Rhodobacter capsulatus , 2005, Applied and Environmental Microbiology.

[22]  A. Guss,et al.  Genetic analysis of pigment biosynthesis in Xanthobacter autotrophicus Py2 using a new, highly efficient transposon mutagenesis system that is functional in a wide variety of bacteria , 2002, Archives of Microbiology.

[23]  J. DiRuggiero,et al.  Evidence of recent lateral gene transfer among hyperthermophilic Archaea , 2000, Molecular microbiology.

[24]  F. Tabita,et al.  A global signal transduction system regulates aerobic and anaerobic CO2 fixation in Rhodobacter sphaeroides , 1996, Journal of bacteriology.

[25]  P. Hallenbeck,et al.  Roles of CfxA, CfxB, and external electron acceptors in regulation of ribulose 1,5-bisphosphate carboxylase/oxygenase expression in Rhodobacter sphaeroides , 1990, Journal of bacteriology.

[26]  F. Daldal,et al.  Cytochrome c(2) is not essential for photosynthetic growth of Rhodopseudomonas capsulata. , 1986, Proceedings of the National Academy of Sciences of the United States of America.

[27]  A. Pühler,et al.  A Broad Host Range Mobilization System for In Vivo Genetic Engineering: Transposon Mutagenesis in Gram Negative Bacteria , 1983, Bio/Technology.

[28]  D. C. Yoch,et al.  Effect of light intensity and inhibitors of nitrogen assimilation on NH4+ inhibition of nitrogenase activity in Rhodospirillum rubrum and Anabaena sp , 1982, Journal of bacteriology.

[29]  G. Ditta,et al.  Broad host range DNA cloning system for gram-negative bacteria: construction of a gene bank of Rhizobium meliloti. , 1980, Proceedings of the National Academy of Sciences of the United States of America.

[30]  H. Gest,et al.  H2 metabolism in the photosynthetic bacterium Rhodopseudomonas capsulata: production and utilization of H2 by resting cells , 1977, Journal of bacteriology.

[31]  G. Bertani,et al.  Preparation and characterization of temperate, non-inducible bacteriophage P2 (host: Escherichia coli). , 1970, The Journal of general virology.

[32]  H. Boyer,et al.  A complementation analysis of the restriction and modification of DNA in Escherichia coli. , 1969, Journal of molecular biology.

[33]  W R SISTROM,et al.  A requirement for sodium in the growth of Rhodopseudomonas spheroides. , 1960, Journal of general microbiology.