Representation formulas for Malliavin derivatives of diffusion processes

Abstract.We provide new representation formulas for Malliavin derivatives of diffusions, based on a transformation of the underlying processes. Both the univariate and the multivariate cases are considered. First order as well as higher order Malliavin derivatives are characterized. Numerical illustrations of the benefits of the transformation are provided.

[1]  Jakša Cvitanić,et al.  Efficient Computation of Hedging Portfolios for Options with Discontinuous Payoffs , 2003 .

[2]  S. Shreve,et al.  Stochastic differential equations , 1955, Mathematical Proceedings of the Cambridge Philosophical Society.

[3]  B. Øksendal Stochastic Differential Equations , 1985 .

[4]  Philip Protter,et al.  Wong-Zakai Corrections, Random Evolutions, and Simulation Schemes for SDE's , 1991 .

[5]  P. Hartman Ordinary Differential Equations , 1965 .

[6]  Pierre-Louis Lions,et al.  Applications of Malliavin calculus to Monte Carlo methods in finance , 1999, Finance Stochastics.

[7]  I. Karatzas,et al.  A generalized clark representation formula, with application to optimal portfolios , 1991 .

[8]  P. Kloeden,et al.  Numerical Solution of Stochastic Differential Equations , 1992 .

[9]  J. Lamperti A simple construction of certain diffusion processes , 1964 .

[10]  J. Detemple,et al.  A Monte Carlo Method for Optimal Portfolios , 2000 .

[11]  J. Magnus,et al.  Matrix Differential Calculus with Applications in Statistics and Econometrics , 1991 .

[12]  D. Nualart The Malliavin Calculus and Related Topics , 1995 .

[13]  Bruno Bouchard,et al.  On the Malliavin approach to Monte Carlo approximation of conditional expectations , 2004, Finance Stochastics.

[14]  C. M. Place,et al.  Ordinary Differential Equations , 1982 .

[15]  H. P. Annales de l'Institut Henri Poincaré , 1931, Nature.

[16]  J. Detemple,et al.  Asymptotic Properties of Monte Carlo Estimators of Diffusion Processes , 2006 .

[17]  V. Bogachëv,et al.  Liens entre équations différentielles stochastiques et ordinaires en dimension infinie , 1995 .

[18]  C. Ewald,et al.  A Note on the Malliavin Differentiability of the Heston Volatility , 2005 .

[19]  P. Protter,et al.  Asymptotic error distributions for the Euler method for stochastic differential equations , 1998 .

[20]  H. Rootzén Limit Distributions for the Error in Approximations of Stochastic Integrals , 1980 .

[21]  Pierre-Louis Lions,et al.  Applications of Malliavin calculus to Monte-Carlo methods in finance. II , 2001, Finance Stochastics.