An overview of periodic elliptic operators
暂无分享,去创建一个
[1] Yoshimi Saito,et al. Eigenfunction Expansions Associated with Second-order Differential Equations for Hilbert Space-valued Functions , 1971 .
[2] About isospectral deformations of discrete laplacians , 1979 .
[3] C. Gérard. Resonance theory for periodic Schrödinger operators , 1990 .
[4] Peter Li. Geometric Analysis: Index , 2012 .
[5] R. Pinsky. Second Order Elliptic Operators with Periodic Coefficients: Criticality Theory, Perturbations, and Positive Harmonic Functions , 1995 .
[6] J. S. Blakemore. Solid State Physics: ELECTRONS IN METALS , 1985 .
[7] E. Bierstone,et al. Semianalytic and subanalytic sets , 1988 .
[8] Absolute continuity of the spectrum of a Schrodinger operator with a potential which is periodic in some directions and decays in others , 2004, math-ph/0402013.
[9] R. Hempel,et al. Spectral properties of periodic media in the large coupling limit , 1999 .
[10] S. Levendorskii,et al. On the structure of spectra of periodic elliptic operators , 2001 .
[11] B. Simon. On the genericity of nonvanishing instability intervals in Hills equation , 1976 .
[12] Large gaps in point-coupled periodic systems of manifolds , 2002, math-ph/0212052.
[13] Y. Kordyukov. Semiclassical Asymptotics and Spectral Gaps for Periodic Magnetic Schrödinger Operators on Covering Manifolds , 2006 .
[14] Carlos Conca,et al. Bloch approximation in homogenization on bounded domains , 2005 .
[15] G. Folland. A course in abstract harmonic analysis , 1995 .
[16] R. Shterenberg,et al. Complete asymptotic expansion of the integrated density of states of multidimensional almost-periodic Schrödinger operators , 2010, 1004.2939.
[17] Konstantin Pankrashkin,et al. Quantum waveguides with small periodic perturbations: gaps and edges of Brillouin zones , 2012, 1211.5786.
[18] Toshiaki Adachi,et al. Density of states in spectral geometry , 1993 .
[19] J. Ziman. Principles of the Theory of Solids , 1965 .
[20] Bethe–Sommerfeld Conjecture for Pseudodifferential Perturbation , 2008, 0804.3488.
[21] Peter Li. CURVATURE AND FUNCTION THEORY ON RIEMANNIAN MANIFOLDS , 2002 .
[22] Maciej Dunajski,et al. Integrable Systems , 2012 .
[23] V. Meshkov. ON THE POSSIBLE RATE OF DECAY AT INFINITY OF SOLUTIONS OF SECOND ORDER PARTIAL DIFFERENTIAL EQUATIONS , 1992 .
[24] Mariya Vorobets. On the Bethe–Sommerfeld conjecture for certain periodic Maxwell operators , 2011 .
[25] Kaoru Ono,et al. Periodic Schrödinger Operators on a Manifold , 1989 .
[26] N. Filonov,et al. Absolute continuity of the Schrödinger operator spectrum in a multidimensional cylinder , 2009 .
[27] C. Gérard. A proof of the abstract limiting absorption principle by energy estimates , 2008 .
[28] P. Kuchment,et al. On resonant spectral gap opening in quantum graph networks , 2016, 1601.04774.
[29] A. Sobolev,et al. Absence of the singular continuous component in spectra of analytic direct integrals , 2006 .
[30] Spectral Gaps for Periodic Schrödinger Operators with Strong Magnetic Fields , 2003, math/0311200.
[31] M. Shubin. THE SPECTRAL THEORY AND THE INDEX OF ELLIPTIC OPERATORS WITH ALMOST PERIODIC COEFFICIENTS , 1979 .
[32] Carlos Conca,et al. The Bloch transform and applications , 1998 .
[33] Green's function asymptotics near the internal edges of spectra of periodic elliptic operators. Spectral edge case , 2012 .
[34] G. Panati,et al. Bloch Bundles, Marzari-Vanderbilt Functional and Maximally Localized Wannier Functions , 2011, 1112.6197.
[36] I. Kunin. Inverse Scattering Method , 1982 .
[37] Measures of Fermi Surfaces and Absence of Singular Continuous Spectrum for Magnetic Schrödinger Operators , 1999, math-ph/9908026.
[38] SPHERICAL REPRESENTATION OF SOLUTIONS OF INVARIANT DIFFERENTIAL EQUATIONS ON A RIEMANNIAN SYMMETRIC SPACE OF NONCOMPACT TYPE , 1986 .
[39] U. Feige,et al. Spectral Graph Theory , 2015 .
[40] N. Filonov,et al. Absolute continuity of the “even" periodic Schrödinger operator with nonsmooth coefficients , 2005 .
[41] Joe Calloway,et al. Energy Band Theory , 1964 .
[42] B. Mityagin,et al. Spectral gaps of Schr\"odinger operators with periodic singular potentials , 2009, 0903.5210.
[43] C. Conca,et al. Fourier approach to homogenization problems , 2002 .
[44] On the quantum graph spectra of graphyne nanotubes , 2013, 1311.4162.
[45] Absolute continuity of the spectrum of a Landau Hamiltonian perturbed by a generic periodic potential , 2009, 0904.2891.
[46] Mark S. C. Reed,et al. Method of Modern Mathematical Physics , 1972 .
[47] S. Agmon. On Positive Solutions of Elliptic Equations with Periodic Coefficients in N, Spectral Results and Extensions to Elliptic Operators on Riemannian Manifolds , 1984 .
[48] The Creation of Spectral Gaps by Graph Decoration , 2000, math-ph/0008013.
[49] H. McKean,et al. The spectrum of Hill's equation , 1975 .
[50] R. Young. The Fermi Surfaces of Metals , 1972 .
[51] Leonid Parnovski,et al. Bethe–Sommerfeld Conjecture , 2008, 0801.3096.
[52] R. Tolimieri,et al. Abelian harmonic analysis, theta functions and function algebras on a nilmanifold , 1975 .
[53] Liouville theorems and spectral edge behavior on abelian coverings of compact manifolds , 2005, math-ph/0503010.
[54] J. Neumann,et al. Über merkwürdige diskrete Eigenwerte , 1993 .
[55] G. Floquet,et al. Sur les équations différentielles linéaires à coefficients périodiques , 1883 .
[56] T. Sunada,et al. On the spectrum of gauge-periodic elliptic operators , 1992 .
[57] H. Knörrer,et al. There is no two dimensional analogue of Lamé's equation , 1992 .
[58] Peter Li. Harmonic Functions on Complete Riemannian Manifolds , 2008 .
[59] Charles L Fefferman,et al. Topologically protected states in one-dimensional continuous systems and Dirac points , 2014, Proceedings of the National Academy of Sciences.
[60] F. M. Arscott,et al. Periodic Differential Equations , 1963 .
[61] Vladimir Igorevich Arnold,et al. Geometrical Methods in the Theory of Ordinary Differential Equations , 1983 .
[62] On absence of embedded eigenvalues for schrÖdinger operators with perturbed periodic potentials , 1999, math-ph/9904016.
[63] J. M. Harrison,et al. On occurrence of spectral edges for periodic operators inside the Brillouin zone , 2007, math-ph/0702035.
[64] Joseph B. Keller,et al. Partial Differential Equations with Periodic Coefficients and Bloch Waves in Crystals , 1964 .
[65] Zhongwei Shen. On the Bethe-Sommerfeld conjecture for higher-order elliptic operators , 2003 .
[66] I. M. Gelfand,et al. Eigenfunction expansions for equations with periodic coefficients , 1987 .
[67] S. Novikov. Two-dimensional Schrödinger operators in periodic fields , 1985 .
[68] Zhongwei Shen,et al. Uniform Sobolev inequalities and absolute continuity of periodic operators , 2007 .
[69] H. Knörrer,et al. A directional compactification of the complex Bloch variety , 1990 .
[70] L. I. Danilov. On absolute continuity of the spectrum of three- and four-dimensional periodic Schrödinger operators , 2010 .
[71] Spectral asymptotics of periodic elliptic operators , 1997, funct-an/9707002.
[72] E. Green. Spectral Theory of Laplace–Beltrami Operators with Periodic Metrics , 1997 .
[73] Kristian Kirsch,et al. Theory Of Ordinary Differential Equations , 2016 .
[74] Claudia Baier,et al. Elektronentheorie der Metalle , 1937, Nature.
[75] Toshikazu Sunada,et al. Fundamental groups and Laplacians , 1988 .
[76] L. Brillouin. Wave propagation in periodic structures : electric filters and crystal lattices , 1953 .
[77] Michael S. Maier. Michael S , 1966 .
[78] Av Sobolev. Recent results on the Bethe-Sommerfeld conjecture , 2007 .
[79] Vassilis G. Papanicolaou,et al. Some Results on Ordinary Differential Operators with Periodic Coefficients , 2014, 1412.5423.
[80] S. Fujita,et al. The Fermi Surface , 2007 .
[81] C. Fefferman,et al. Bifurcations of edge states—topologically protected and non-protected—in continuous 2D honeycomb structures , 2015, 1509.08957.
[82] Kristian Kirsch,et al. Methods Of Modern Mathematical Physics , 2016 .
[83] A. Scherer,et al. Coupled-resonator optical waveguide: a proposal and analysis. , 1999, Optics letters.
[84] EXISTENCE OF SPECTRAL GAPS, COVERING MANIFOLDS AND RESIDUALLY FINITE GROUPS , 2005, math-ph/0503005.
[85] Toshikazu Sunada,et al. Riemannian coverings and isospectral manifolds , 1985 .
[86] B. Simon,et al. Scattering theory for systems with different spatial asymptotics on the left and right , 1978 .
[87] A. Sobolev. Absolute continuity of the periodic magnetic Schrödinger operator , 1999 .
[88] K. Yajima. Scattering theory for Schrödinger equations with potentials periodic in time , 1977 .
[89] M. Kreĭn,et al. Introduction to the theory of linear nonselfadjoint operators , 1969 .
[90] Zhongwei Shen. On Absolute Continuity of the Periodic Schrödinger Operators , 2001 .
[91] J. Sjöstrand. Microlocal analysis for the periodic magnetic schrodinger equation and related questions , 1991 .
[92] On isospectral potentials on flat tori II , 1995 .
[93] Semiclassical Asymptotics and Gaps in the Spectra of Magnetic Schrödinger Operators , 2001, math/0102021.
[95] I. M. Glazman. Direct methods of qualitative spectral analysis of singular differential operators , 1965 .
[96] Rachel J. Steiner,et al. The spectral theory of periodic differential equations , 1973 .
[97] P. Kuchment,et al. Green's function asymptotics near the internal edges of spectra of periodic elliptic operators. Spectral gap interior , 2015, 1508.06703.
[98] Alexander Figotin,et al. Spectral Properties of Classical Waves in High-Contrast Periodic Media , 1998, SIAM J. Appl. Math..
[99] K. Schmidt,et al. Periodic Differential Operators , 2012 .
[100] M. G. Kreïn. Stability of solutions of differential equations in Banach space , 2007 .
[101] Inverse spectral problem for the Schrödinger equation with periodic vector potential , 1989 .
[102] P. Kuchment,et al. Integral representations and Liouville theorems for solutions of periodic elliptic equations , 2000, math/0007051.
[103] Resolvent estimates and spectrum of the Dirac operator with periodic potential , 1995 .
[104] E. Wohlfarth. Electrons in Metals , 1954, Nature.
[105] F. Nier,et al. Scattering theory for the perturbations of periodic Schrödinger operators , 1998 .
[106] Boris Mityagin,et al. Smoothness of Schrödinger Operator Potential in the Case of Gevrey Type Asymptotics of the Gaps , 2002 .
[107] Y. Pinchover. On positive solutions of second-order elliptic equations, stability results, and classification , 1988 .
[108] David L. Webb,et al. Inverse spectral results on even dimensional tori , 2008 .
[109] W. Woess. Random walks on infinite graphs and groups, by Wolfgang Woess, Cambridge Tracts , 2001 .
[110] Yulia E. Karpeshina,et al. Perturbation Theory for the Schrödinger Operator with a Periodic Potential , 1997 .
[111] V. Zhikov,et al. Homogenization of Differential Operators and Integral Functionals , 1994 .
[112] M. Wegener,et al. Periodic nanostructures for photonics , 2007 .
[113] A. Khrabustovskyi,et al. Gaps in the spectrum of the Neumann Laplacian generated by a system of periodically distributed traps , 2013, 1301.2926.
[114] M. Kreĭn,et al. Stability of Solutions of Differential Equations in Banach Spaces , 1974 .
[115] Yulia Karpeshina. Spectral Properties of the Periodic Magnetic Schrödinger Operator in the High-Energy Region. Two-Dimensional Case , 2004 .
[116] M. M. Skriganov,et al. Geometric and arithmetic methods in the spectral theory of multidimensional periodic operators , 1987 .
[117] M. Eastham,et al. Schrödinger-type operators with continuous spectra , 1982 .
[118] T. O’Neil. Geometric Measure Theory , 2002 .
[119] Mark J. Ablowitz,et al. Multidimensional nonlinear evolution equations and inverse scattering , 1986 .
[120] F. Klopp,et al. Endpoints of the spectrum of periodic operators are generically simple , 2000 .
[121] H. Grauert. Analytische Faserungen über holomorph-vollständigen Räumen , 1958 .
[122] Yulia Karpeshina. On the density of states for the periodic Schrödinger operator , 2000 .
[123] S. Chu. Nonperturbative Approaches to Atomic and Molecular Multiphoton (Half-Collision) Processes in Intense Laser Fields , 1997 .
[124] P. Kuchment,et al. On Embedded Eigenvalues of Perturbed Periodic Schrödinger Operators , 1998 .
[125] F. Lund. Solitons and Geometry , 1978 .
[126] B. Simon. Szegő's Theorem and Its Descendants: Spectral Theory for L 2 Perturbations of Orthogonal Polynomials , 2010 .
[127] N. Filonov,et al. Absolute continuity of the spectrum of the periodic Schrödinger operator in a layer and in a smooth cylinder , 2010, 1011.1394.
[128] L. Friedlander,et al. Institute for Mathematical Physics on the Spectrum of a Class of Second Order Periodic Elliptic Differential Operators on the Spectrum of a Class of Second Order Periodic Elliptic Differential Operators , 2022 .
[129] M. Berry,et al. Diabolical points in the spectra of triangles , 1984, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.
[130] L. Ehrenpreis. Fourier analysis in several complex variables , 1970 .
[131] Y. Pinchover,et al. Manifolds With Group Actions and Elliptic Operators , 1995 .
[132] H. Knörrer,et al. Perturbatively unstable eigenvalues of a periodic Schrödinger operator , 1991 .
[133] Hans L. Cycon,et al. Schrodinger Operators: With Application to Quantum Mechanics and Global Geometry , 1987 .
[134] Yves Colin de Verdière. Sur les singularités de van Hove génériques , 1991 .
[135] Barry Simon,et al. Analytic properties of band functions , 1978 .
[136] Spectrum of the periodic Dirac operator , 2000, 0905.4622.
[137] V. A. I︠A︡kubovich,et al. Linear differential equations with periodic coefficients , 1975 .
[138] The Schrödinger operator in a periodic waveguide on a plane and quasiconformal mappings , 2005 .
[139] Kurt Busch,et al. The Wannier function approach to photonic crystal circuits , 2003 .
[140] V. Guillemin. Spectral theory on S2: Some open questions , 1981 .
[141] P. Kuchment,et al. On the location of spectral edges in -periodic media , 2010, 1006.3001.
[142] O. Veliev. Spectrum of multidimensional periodic operators , 1990 .
[143] On the scattering theory of the Laplacian with a periodic boundary condition. I. Existence of wave operators , 2003 .
[144] E. Jaynes,et al. The Fermi Surface , 1962 .
[145] R. Shterenberg,et al. Asymptotic expansion of the integrated density of states of a two-dimensional periodic Schrödinger operator , 2008, 0804.3561.
[146] F. Smithies. Linear Operators , 2019, Nature.
[147] P. Kuchment. Graph models for waves in thin structures , 2002 .
[148] P. Kuchment,et al. GREEN ’ S FUNCTION ASYMPTOTICS NEAR THE INTERNAL EDGES OF SPECTRA OF PERIODIC ELLIPTIC OPERATORS , 2015 .
[149] B. Harris. On the spectrum of the periodic Dirac operator , 1981, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.
[150] M. Gavrilă. Atomic Structure and Decay in High-Frequency Fields , 1992 .
[151] J. Combes,et al. Localization Near Band Edges For Random Schr Odinger Operators , 1997 .
[152] Steven G. Johnson,et al. Photonic Crystals: Molding the Flow of Light , 1995 .
[153] Homogenization with corrector for a multidimensional periodic elliptic operator near an edge of an inner gap , 2011 .
[154] J. Moser,et al. On a Liouville-type theorem for linear and nonlinear elliptic differential equations on a torus , 1992 .
[155] Homogenization with corrector for a periodic elliptic operator near an edge of inner gap , 2009 .
[156] V. Palamodov,et al. Harmonic synthesis of solutions of elliptic equation with periodic coefficients , 1993 .
[157] H. Knörrer,et al. The geometry of algebraic Fermi curves , 1992 .
[158] Y. Zel’dovich. METHODOLOGICAL NOTES: Scattering and emission of a quantum system in a strong electromagnetic wave , 1973 .
[159] P. Wallace. The Band Theory of Graphite , 1947 .
[160] An example of a periodic magnetic Schrödinger operator with degenerate lower edge of the spectrum , 2005 .
[161] Ole A. Nielsen. Direct Integral Theory , 1980 .
[162] P. Hartman. Ordinary Differential Equations , 1965 .
[163] T. Colding,et al. HARMONIC FUNCTIONS ON MANIFOLDS , 1997 .
[164] A. Pliś. Non-Uniqueness in Cauchy's Problem for Differential Equations of Elliptic Type , 1960 .
[165] B. Simon. Trace ideals and their applications , 1979 .
[166] B. Helffer,et al. Asymptotic of the density of states for the Schrödinger operator with periodic electric potential , 1998 .
[167] Absolutely Continuous Spectrum for the Isotropic Maxwell Operator with Coefficients that are Periodic in Some Directions and Decay in Others , 2004, math-ph/0406045.
[168] R. Bolstein,et al. Expansions in eigenfunctions of selfadjoint operators , 1968 .
[169] R. Brooks. The fundamental group and the spectrum of the laplacian , 1981 .
[170] N. Zimbovskaya. Local Geometry of the Fermi Surface: And High-Frequency Phenomena in Metals , 2001 .
[171] V. Grushin,et al. Multiparameter perturbation theory of Fredholm operators applied to bloch functions , 2009 .
[172] Threshold Effects near the Lower Edge of the Spectrum for Periodic Differential Operators of Mathematical Physics , 2001 .
[173] Edward Bierstone,et al. A simple constructive proof of Canonical Resolution of Singularities , 1991 .
[174] Walter Kohn,et al. Analytic Properties of Bloch Waves and Wannier Functions , 1959 .
[175] G. Nenciu. Existence of the exponentially localised Wannier functions , 1983 .
[176] J. Zak,et al. MAGNETIC TRANSLATION GROUP , 1964 .
[177] Gianluca Panati. Triviality of Bloch and Bloch–Dirac Bundles , 2006 .
[178] M. Birman,et al. Homogenization of a multidimensional periodic elliptic operator in a neighborhood of the edge of an internal gap , 2006 .
[179] M. Shubin,et al. The spectral asymptotics of elliptic operators of Schrödinger type on a hyperbolic space , 1992 .
[180] J. S. Howland. Floquet operators with singular spectrum. II , 1989 .
[181] P. Kuchment. Floquet Theory for Partial Differential Equations , 1993 .
[182] M. Babillot. Asymptotics of Green Functions on a Class of Solvable Lie Groups , 1998 .
[183] C. Conca,et al. Fluids And Periodic Structures , 1995 .
[184] C. Fefferman,et al. Edge States in Honeycomb Structures , 2015, 1506.06111.
[185] Konstantin Pankrashkin,et al. On the extrema of band functions in periodic waveguides , 2013 .
[186] Eberhard Freitag,et al. Analytic Functions of Several Complex Variables , 2011 .
[187] A. Soshnikov,et al. Splitting of the Low Landau Levels into a Set of Positive Lebesgue Measure under Small Periodic Perturbations , 1997 .
[188] Complete Asymptotic Expansion of the Integrated Density of States of Multidimensional Almost-Periodic Pseudo-Differential Operators , 2012, 1204.1076.
[189] P. Kuchment. The mathematics of photonic crystals , 2001 .
[190] Periodic manifolds with spectral gaps , 2002, math-ph/0207017.
[191] P. Kuchment. Tight frames of exponentially decaying Wannier functions , 2008, 0807.1342.
[192] P. McClintock,et al. Graphene: Carbon in Two Dimensions , 2012 .
[193] V. I. Arnold,et al. On teaching mathematics , 1998 .
[194] B. Mityagin. The Zero Set of a Real Analytic Function , 2015, Mathematical Notes.
[195] V. Palamodov,et al. Linear Differential Operators with Constant Coefficients , 1970 .
[196] The periodic Dirac operator is absolutely continuous , 1999 .
[197] A R Plummer,et al. Introduction to Solid State Physics , 1967 .
[198] Peter D. Lax,et al. Periodic solutions of the KdV equation , 2010 .
[199] John Mallet-Paret,et al. Floquet bundles for scalar parabolic equations , 1995 .
[200] Asymptotic of the density of states for the Schrödinger operator with periodic electromagnetic potential , 1997 .
[201] A. Khrabustovskyi. Opening up and control of spectral gaps of the Laplacian in periodic domains , 2013, 1308.4091.
[202] Mo-Lin Ge,et al. Theory of Solitons , 2016 .
[203] P. Kuchment,et al. BANACH BUNDLES AND LINEAR OPERATORS , 1975 .
[204] R. Remmert,et al. Theory Of Stein Spaces , 1979 .
[205] M. Shubin,et al. ASYMPTOTIC EXPANSION OF THE STATE DENSITY AND THE SPECTRAL FUNCTION OF A HILL OPERATOR , 1987 .
[206] I. Kachkovskiy,et al. On the structure of band edges of 2d periodic elliptic operators , 2015, 1510.04367.
[207] T. Sunada. Group C*-Algebras and the Spectrum of a Periodic Schrödinger Operator on a Manifold , 1992, Canadian Journal of Mathematics.
[208] Spectral Theory for Periodic Schrödinger Operators with Reflection Symmetries , 2003 .
[209] Positive measure spectrum for Schrödinger operators with periodic magnetic fields , 2002, math-ph/0209039.
[210] L. I. Danilov. On Absolute Continuity of the Spectrum of a 3D Periodic Magnetic Dirac Operator , 2011 .
[211] Shui-Nee Chow,et al. Floquet Theory for Parabolic Differential Equations , 1994 .
[212] G. Weiss,et al. EIGENFUNCTION EXPANSIONS. Associated with Second-order Differential Equations. Part I. , 1962 .
[213] Francis Nier,et al. The Mourre Theory for Analytically Fibered Operators , 1998 .
[214] V. Zhikov,et al. On spectrum gaps of some divergent elliptic operators with periodic coefficients , 2005 .
[215] Integrated Density of States for the Periodic Schrödinger Operator in Dimension Two , 2005 .
[216] Anatolii A. Logunov,et al. Analytic functions of several complex variables , 1965 .
[217] Göran Borg. Eine Umkehrung der Sturm-Liouvilleschen Eigenwertaufgabe , 1946 .
[218] N. Marzari,et al. Maximally localized generalized Wannier functions for composite energy bands , 1997, cond-mat/9707145.
[219] Minjae Lee. Conic dispersion surfaces for point scatterers on a honeycomb lattice , 2014 .
[220] Wilhelm Schlag,et al. Spectral Theory and Mathematical Physics: A Festschrift in Honor of Barry Simon's 60th Birthday , 2007 .
[221] Nate Orlow,et al. Hill ’ s Equation , 2010 .
[222] Tosio Kato. Perturbation theory for linear operators , 1966 .
[223] David W. Zingg,et al. for Linear Ordinary Differential Equations , 1997 .
[224] H. Knörrer,et al. The perturbatively stable spectrum of a periodic Schrödinger operator , 1990 .
[225] Asymptotic bounds for spectral bands of periodic Schrödinger operators , 2006 .
[226] A. Bensoussan,et al. Asymptotic analysis for periodic structures , 1979 .
[227] P. Kuchment. Quantum graphs , 2004 .
[228] S. Łojasiewicz. Introduction to Complex Analytic Geometry , 1991 .
[229] On the Structure of Eigenfunctions Corresponding to Embedded Eigenvalues of Locally Perturbed Periodic Graph Operators , 2005, math-ph/0511084.
[230] A. Sobolev,et al. Absolute Continuity in Periodic Waveguides , 2002 .
[231] E. Korotyaev,et al. Schrödinger Operators on Zigzag Nanotubes , 2007 .
[232] L. Parnovski,et al. Critical Dimensions for counting Lattice Points in Euclidean Annuli , 2010 .
[233] Motoko Kotani,et al. Discrete Geometric Analysis , 2004 .
[234] Floquet-Bloch Theory for Elliptic Problems with Discontinuous Coefficients , 2011 .
[235] M. Kha. Green's function asymptotics of periodic elliptic operators on abelian coverings of compact manifolds , 2015, 1511.00276.
[236] T. Sunada,et al. On the spectrum of periodic elliptic operators , 1992, Nagoya Mathematical Journal.
[237] Lower bound on the density of states for periodic Schr , 2009, 0907.4465.
[238] M. Birman,et al. Second order periodic differential operators. Threshold properties and homogenization , 2004 .
[239] Noncommutative Bloch theory , 2000, math-ph/0006021.
[240] V. Rich. Personal communication , 1989, Nature.
[242] Carlos Conca,et al. Bloch Approximation in Homogenization and Applications , 2002, SIAM J. Math. Anal..
[243] Alden Waters. Isospectral periodic Torii in dimension 2 , 2015 .
[244] P. Kuchment,et al. Introduction to Quantum Graphs , 2012 .
[245] F. Greenleaf,et al. Representations of nilpotent Lie groups and their applications , 1989 .
[246] Integral representations of solutions of periodic elliptic equations , 2006, math/0604139.
[247] Absolute Continuity of the Spectrum for Periodically Modulated Leaky Wires in $${\mathbb{R}^{3}}$$ , 2005, math/0508525.
[248] M. Born,et al. Wave Propagation in Periodic Structures , 1946, Nature.
[249] On an abstract integrodifferential equation with periodic coefficient. I , 1992 .
[250] M. Seifert,et al. Generalized Eigenfunctions for Waves in Inhomogeneous Media , 2002 .
[251] R. Shterenberg,et al. On the scattering theory of the Laplacian with a periodic boundary condition. II. Additional channels of scattering , 2004, Documenta Mathematica.
[252] ABSOLUTE CONTINUITY OF THE SPECTRUM FOR PERIODICALLY MODULATED LEAKY WIRES IN R3 , 2005 .
[253] N. Filonov. Second-Order Elliptic Equation of Divergence Form Having a Compactly Supported Solution , 2001 .
[254] K. Yajima. Large Time Behaviors of Time-Periodic Quantum Systems , 1984 .
[255] Michael I. Weinstein,et al. Wave Packets in Honeycomb Structures and Two-Dimensional Dirac Equations , 2012, 1212.6072.
[256] Stephen M. Stigler,et al. STIGLER'S LAW OF EPONYMY† , 1980 .
[257] On the structure of the lower edge of the spectrum of the periodic magnetic Schrödinger operator with small magnetic potential , 2006 .
[258] J. Howland. Scattering theory for Hamiltonians periodic in time , 2012, 1212.2931.
[259] O. Veliev. Perturbation Theory for the Periodic Multidimensional Schrodinger Operator and the Bethe-Sommerfeld Conjecture , 2006, math-ph/0610057.
[260] S. Yau,et al. GEOMETRIC ANALYSIS , 2005 .
[261] Carlos Conca,et al. Homogenization of Periodic Structures via Bloch Decomposition , 1997, SIAM J. Appl. Math..
[262] Michael I. Weinstein,et al. Honeycomb Lattice Potentials and Dirac Points , 2012, 1202.3839.
[263] N. Filonov. Gaps in the Spectrum of the Maxwell Operator with Periodic Coefficients , 2003 .
[264] Absence of eigenvalues for the generalized two-dimensional periodic Dirac operator , 2007, math-ph/0703029.
[265] L. Saloff‐Coste. RANDOM WALKS ON INFINITE GRAPHS AND GROUPS (Cambridge Tracts in Mathematics 138) , 2001 .
[266] V. Hoang,et al. Absence of bound states for waveguides in 2D periodic structures , 2011, 1111.4578.
[267] Harold R. Parks,et al. A Primer of Real Analytic Functions , 1992 .
[268] M. Avellaneda,et al. Un theoreme de Liouville pour des equation elliptiques a coefficient periodiques (French): [A Liouville theorem for elliptic equations with peridic coefficients] , 1989 .
[269] P. Kuchment,et al. Quantum graph spectra of a graphyne structure , 2013, 1302.5176.
[270] Gregory Berkolaiko,et al. Symmetry and Dirac points in graphene spectrum , 2014, Journal of Spectral Theory.
[271] Grégoire Allaire,et al. BLOCH WAVE HOMOGENIZATION AND SPECTRAL ASYMPTOTIC ANALYSIS , 1998 .
[272] G. Johnson. The Schrödinger equation , 1998 .
[273] Barry Simon,et al. Comparison theorems for the gap of Schrödinger òperators , 1987 .
[274] Robert W. Boyd,et al. SCISSOR solitons and other novel propagation effects in microresonator-modified waveguides , 2002 .
[275] Peter Kuchment,et al. Spectral Properties of High Contrast Band-Gap Materials and Operators on Graphs , 1999, Exp. Math..
[276] M. Skriganov. The spectrum band structure of the three-dimensional Schrödinger operator with periodic potential , 1985 .
[277] Absolute Continuity in Periodic Thin Tubes and Strongly Coupled Leaky Wires , 2003, math/0307188.
[278] L. I. Danilov. On absolute continuity of the spectrum of a periodic magnetic Schrödinger operator , 2009, 0902.3371.
[279] A. Wigderson,et al. ENTROPY WAVES, THE ZIG-ZAG GRAPH PRODUCT, AND NEW CONSTANT-DEGREE , 2004, math/0406038.
[280] C. Wilcox. Theory of Bloch waves , 1978 .
[281] J. Cooper,et al. Les Algebres d'Operateurs dans l'Espace Hilbertien , 1958 .
[282] S. Shipman. Eigenfunctions of Unbounded Support for Embedded Eigenvalues of Locally Perturbed Periodic Graph Operators , 2013, 1307.6838.
[283] Tetsuo Tsuchida,et al. Asymptotics of Green functions and the limiting absorption principle for elliptic operators with periodic coefficients , 2006 .
[284] Absolute Continuity of the Spectrum of the Periodic Operator of Elasticity Theory for Constant Shear Modulus , 2002 .
[285] Peter Kuchment,et al. Waves in Periodic and Random Media , 2003 .
[286] D. Thouless. Wannier functions for magnetic sub-bands , 1984 .
[287] Absolute Continuity of the Spectrum of a Periodic Schrödinger Operator , 2003 .
[288] Sébastien Guenneau,et al. Bloch dispersion and high frequency homogenization for separable doubly-periodic structures , 2012 .
[289] L. Friedlander. ON THE DENSITY OF STATES OF PERIODIC MEDIA IN THE LARGE COUPLING LIMIT , 2002 .
[290] Andrii Khrabustovskyi,et al. Periodic elliptic operators with asymptotically preassigned spectrum , 2012, Asymptot. Anal..
[291] V. I. I︠U︡dovich. The linearization method in hydrodynamical stability theory , 1989 .
[292] On the Spectra of Carbon Nano-Structures , 2006, math-ph/0612021.
[293] B. Dahlberg,et al. A remark on two dimensional periodic potentials , 1982 .
[294] On the spectrum of the two-dimensional periodic Dirac operator , 1999 .
[295] F. Greenleaf,et al. Basic theory and examples , 1990 .
[296] Peter Kuchment. Quantum graphs: II. Some spectral properties of quantum and combinatorial graphs , 2005 .
[297] M. Babillot,et al. Théorie du renouvellement pour des chaînes semi-markoviennes transientes , 1988 .
[298] M. Birman,et al. The limit absorption principle and homogenization procedure for periodic elliptic operators , 2008 .
[299] Inverse spectral results on two-dimensional tori , 1990 .
[300] B. Mityagin,et al. Instability zones of periodic 1-dimensional Schrödinger and Dirac operators , 2006 .
[301] T. Kappeler,et al. Asymptotics of spectral quantities of Schrodinger operators , 2011, 1107.4542.
[302] O. Post,et al. Spectral Gaps for Periodic Elliptic Operators with High Contrast: an Overview , 2002, math-ph/0207020.
[303] On discreteness of the spectrum of some operator sheaves associated with a periodic Schrödinger equation , 1988 .
[304] M. Saboormaleki. On the spectrum of non-selfadjoint differential operators. , 2008 .
[305] V. A. Kondrat'ev,et al. On Positive Solutions of Elliptic Equations , 1971 .
[306] J. Lions,et al. Un théorème de Liouville pour des équations elliptiques à coefficients périodiques , 1989 .
[307] J. Garnett,et al. Gaps and bands of one dimensional periodic Schrödinger operators , 1984 .
[308] Bands and Gaps for Periodic Magnetic Hamiltonians , 1995 .
[309] L. I. Danilov. Absolute continuity of the spectrum of a periodic dirac operator , 2000 .
[310] A. Sobolev,et al. Bethe-Sommerfeld conjecture for periodic operators with strong perturbations , 2009, 0907.0887.
[311] The absolute continuity of the spectrum of Maxwell operator in a periodic media , 2000 .
[312] T. Hoffmann-Ostenhof,et al. L2-lower bounds to solutions of one-body Schrödinger equations , 1983, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.
[313] L. Thomas,et al. Time dependent approach to scattering from impurities in a crystal , 1973 .
[314] Absolutely Continuous Spectrum of a Polyharmonic Operator with a Limit Periodic Potential in Dimension Two , 2007, 0711.4404.
[315] B. Bernevig. Topological Insulators and Topological Superconductors , 2013 .
[316] G. V. Chester,et al. Solid State Physics , 2000 .
[317] The Bethe-Sommerfeld conjecture for the 3-Dimensional periodic Landau operator. , 2004 .
[318] K. Yajima. Quantum dynamics of time periodic systems , 1984 .
[319] S. Agmon. Lectures on Elliptic Boundary Value Problems , 1965 .
[320] E. Trubowitz,et al. On isospectral periodic potentials in Rn. II , 1984 .
[321] I. S. Lapin. One Version of the Bethe–Sommerfeld Conjecture , 2003 .
[322] Alexander Figotin,et al. Band-Gap Structure of Spectra of Periodic Dielectric and Acoustic Media. I. Scalar Model , 1996, SIAM J. Appl. Math..
[323] M. Birman. On homogenization procedure for periodic operators near the edge of an internal gap , 2004 .
[324] L. Thomas,et al. Asymptotic behaviour of eigenfunctions for multiparticle Schrödinger operators , 1973 .
[325] Izidor Gertner,et al. The Finite Zak Transform and the Finite Fourier Transform , 1992 .
[326] E. Wigner,et al. Theory of Brillouin Zones and Symmetry Properties of Wave Functions in Crystals , 1936 .
[327] L. Brillouin,et al. Propagation des ondes dans les milieux périodiques , 1957 .
[328] Willy Dörfler,et al. Photonic Crystals: Mathematical Analysis and Numerical Approximation , 2011 .
[329] H. Knörrer,et al. A directional compactification of the complex Fermi surface and isospectrality , 1990 .
[330] Henry P. McKean,et al. Hill’s Operator and Hyperelliptic Function Theory in the Presence of Infinitely Many Branch Points , 1976 .