Identification of the Pre-Columbian Pigment Mayablue on Works of Art by Noninvasive UV-Vis and Raman Spectroscopic Techniques

Abstract UV-visible reflectance spectroscopy and Raman microspectroscopy provide a rapid way to unequivocally identify the pre-Columbian pigment Maya blue. Spectra of modern synthetic materials are compared with data from a contextualized archaeological sample and from an object in the collection of the Los Angeles County Museum of Art. UV-visible spectroscopy and Raman microspectroscopy, together with complementary techniques such as Fourier transform infrared microspectroscopy, reveal significant differences between spectra of indigo as pure crystalline solid or as complexed by palygorskite. These techniques are thus extremely specific, being able to identify Maya blue as a prepared pigment rather than detecting only its ingredients, indigo and palygorskite. Fiber optics UV-visible reflectance spectroscopy and Raman microspectroscopy present the additional advantage of being completely noninvasive and therefore suitable for the study of works of art. Lightweight portable fiber optics UV-visible reflectance spectroscopy devices make it possible to perform measurements in situ on wall paintings and other immovable objects. The spectral differences between pure indigo and the indigo-palygorskite complex can be interpreted in terms of different hydrogen bonding configurations for the indigo molecule.

[1]  W. Lüttke,et al.  Theoretische und spektroskopische Untersuchungen an Indigofarbstoffen, III. Der Einfluß zwischenmolekularer Wasserstoffbrücken auf die Spektren von Indigo im festen Zustand , 1966 .

[2]  N. Colthup CHAPTER 4 – THE VIBRATIONAL ORIGIN OF GROUP FREQUENCIES , 1975 .

[3]  Bernard Guineau L'étude des pigments par les moyens de la microspectométrie Raman , 1987 .

[4]  Robin J. H. Clark,et al.  RAMAN MICROSCOPY : APPLICATION TO THE IDENTIFICATION OF PIGMENTS ON MEDIEVAL MANUSCRIPTS , 1995 .

[5]  K. G. Ponting Indigo and Woad , 1976 .

[6]  Bernard Guineau,et al.  Non-destructive analysis of organic pigments and dyes using Raman microprobe, microfluorometer or absorption microspectrophotometer , 1989 .

[7]  A. O. Shepard Maya Blue: Alternative Hypotheses , 1962, American Antiquity.

[8]  P. Süsse,et al.  Indigo: Crystal structure refinement based on synchrotron data , 1988 .

[9]  D. Gardiner,et al.  ANALYSIS OF WHITE AND BLUE PIGMENTS FROM WATERCOLOURS BY RAMAN MICROSCOPY , 1993 .

[10]  Constantino Reyes-Valerio De Bonampak al Templo Mayor: el azul maya en Mesoamérica , 1993 .

[11]  L. Masschelein-Kleiner,et al.  Étude et Identification du ‘Bleu Maya’ , 1967 .

[12]  睦夫 岩元 Non-destructive analysis , 1989 .

[13]  R. L. Feller,et al.  Artists' Pigments: A Handbook of Their History and Characteristics, Volume 2 , 1995 .

[14]  Henry T. Hopkins The Los Angeles County Museum of Art , 1966 .

[15]  Gabriele Ricchiardi,et al.  Crystal structure refinements of palygorskite and Maya Blue from molecular modelling and powder synchrotron diffraction , 2003 .

[16]  E. R. Littmann Maya Blue—A New Perspective , 1980, American Antiquity.

[17]  Pamela B. Vandiver,et al.  Materials Issues in Art and Archaeology , 1991 .

[18]  H. van Olphen Maya Blue: A Clay-Organic Pigment? , 1966, Science.

[19]  Mauro Bacci,et al.  NON-DESTRUCTIVE SPECTROSCOPIC DETECTION OF COBALT(II) IN PAINTINGS AND GLASS , 1996 .

[20]  C. Coupry,et al.  Raman Spectroscopic Investigation of Blue Contemporary Textiles , 1997 .

[21]  G. Smith,et al.  Raman microscopy in art history and conservation science , 2001 .

[22]  E. R. Littmann Maya Blue—Further Perspectives and the Possible Use of Indigo as the Colorant , 1982, American Antiquity.

[23]  R. Frost,et al.  Near-infrared and mid-infrared spectroscopic study of sepiolites and palygorskites , 2001 .

[24]  Fritz S. Allen,et al.  Automated Fluorescence Rejection Using Shifted Excitation Raman Difference Spectroscopy , 2002 .

[25]  D. Proserpio,et al.  MO theory made visible , 1990 .

[26]  J. E. Kuder,et al.  Spectroscopic differences between crystalline and amorphous phases of indigo , 1972 .

[27]  S. Angel,et al.  THE UTILIZATION OF DIODE LASERS FOR RAMAN SPECTROSCOPY , 1995 .

[28]  M. José-Yacamán,et al.  High resolution electron microscopy of Maya blue paint , 1995 .

[29]  E. Ciliberto,et al.  Modern analytical methods in art and archaeology , 2000 .

[30]  Marco Leona,et al.  Fiber optics reflectance spectroscopy: a unique tool for the investigation of Japanese paintings , 2001 .

[31]  B. Roos,et al.  A Theoretical Study of the Indigoid Dyes and Their Chromophore , 1997 .

[32]  R. J. Gettens Maya Blue: An Unsolved Problem in Ancient Pigments , 1961, American Antiquity.

[33]  G. Sward Chemical Analysis of Pigments , 1972 .

[34]  Hiroaki Takahashi,et al.  Resonance Raman study of the structures of trans and cis isomers and the CC stretching frequencies of N,N′-derivatives of indigo , 1989 .

[35]  R. Chianelli,et al.  Maya blue: Application of XAS and HRTEM to materials science in art and archaeology , 2002 .

[36]  Stefano Baronti,et al.  Non-destructive spectroscopic investigations on paintings using optical fibers , 1992 .

[37]  Mari Carmen Serra Puche,et al.  Maya Blue Paint: An Ancient Nanostructured Material , 1996, Science.

[38]  F. Wallace FIBER OPTICS. , 1965, Hospital topics.

[39]  A. Romani,et al.  A spectrophotometric and fluorimetric study of some anthraquinoid and indigoid colorants used in artistic paintings , 1998 .

[40]  B. Schrader,et al.  Near‐infrared fourier transform Raman spectroscopy of indigoids , 1995 .