Renormalization group approach to the Fröhlich polaron model: application to impurity-BEC problem

When a mobile impurity interacts with a many-body system, such as a phonon bath, a polaron is formed. Despite the importance of the polaron problem for a wide range of physical systems, a unified theoretical description valid for arbitrary coupling strengths is still lacking. Here we develop a renormalization group approach for analyzing a paradigmatic model of polarons, the so-called Fröhlich model, and apply it to a problem of impurity atoms immersed in a Bose-Einstein condensate of ultra cold atoms. Polaron energies obtained by our method are in excellent agreement with recent diagrammatic Monte Carlo calculations for a wide range of interaction strengths. They are found to be logarithmically divergent with the ultra-violet cut-off, but physically meaningful regularized polaron energies are also presented. Moreover, we calculate the effective mass of polarons and find a smooth crossover from weak to strong coupling regimes. Possible experimental tests of our results in current experiments with ultra cold atoms are discussed.

[1]  S. Sarma,et al.  Variational study of polarons in Bose-Einstein condensates , 2014, 1404.4054.

[2]  A. Leggett,et al.  Dynamics of the dissipative two-state system , 1987 .

[3]  M. Troyer,et al.  Dynamical mean-field theory for bosons , 2011, 1103.0017.

[4]  Stefan Palzer,et al.  Quantum transport through a Tonks-Girardeau gas. , 2009, Physical review letters.

[5]  A. Schirotzek,et al.  Realization of a strongly interacting Bose-Fermi mixture from a two-component Fermi gas. , 2008, Physical review letters.

[6]  J. Kondo Resistance Minimum in Dilute Magnetic Alloys , 1964 .

[7]  E. Demler,et al.  Polaronic mass renormalization of impurities in Bose-Einstein condensates: Correlated Gaussian-wave-function approach , 2014, 1410.5691.

[8]  S. Cornish,et al.  Dual-species Bose-Einstein condensate of 87Rb and 133Cs. , 2011, 1102.1576.

[9]  J. Devreese,et al.  Diagrammatic Monte Carlo study of the acoustic and the Bose–Einstein condensate polaron , 2014, 1406.6506.

[10]  S. Jochim,et al.  Precise determination of 6Li cold collision parameters by radio-frequency spectroscopy on weakly bound molecules. , 2004, Physical Review Letters.

[11]  J. Devreese,et al.  Strong coupling treatment of the polaronic system consisting of an impurity in a condensate , 2010, 1011.1150.

[12]  Ben Kain,et al.  Polarons in a dipolar condensate , 2014, 1401.2961.

[13]  Cheng-Hsun Wu,et al.  Observation of Fermi polarons in a tunable Fermi liquid of ultracold atoms. , 2009, Physical review letters.

[14]  U. Schollwock,et al.  Quantum dynamics of a mobile spin impurity , 2012, Nature Physics.

[15]  Metastability and coherence of repulsive polarons in a strongly interacting Fermi mixture , 2011, Nature.

[16]  R. Grimm,et al.  Observation of interspecies Feshbach resonances in an ultracold Rb-Cs mixture , 2008, 0812.3287.

[17]  G Ferrari,et al.  Quasipure Bose-Einstein condensate immersed in a Fermi sea. , 2001, Physical review letters.

[18]  S. R. Clark,et al.  Transport of strong-coupling polarons in optical lattices , 2007, 0710.4493.

[19]  Giamarchi,et al.  Variational theory of elastic manifolds with correlated disorder and localization of interacting quantum particles. , 1996, Physical review. B, Condensed matter.

[20]  S. Schmid,et al.  Dynamics of a cold trapped ion in a Bose-Einstein condensate. , 2010, Physical review letters.

[21]  M. Troyer,et al.  Continuous-time Monte Carlo methods for quantum impurity models , 2010, 1012.4474.

[22]  W. Ketterle,et al.  Observation of Feshbach resonances between two different atomic species. , 2004, Physical review letters.

[23]  J. Mckeever,et al.  Collective oscillations of an imbalanced Fermi gas: axial compression modes and polaron effective mass. , 2009, Physical review letters.

[24]  Polaronic mass renormalization of impurities in BEC : correlated Gaussian wavefunction approach , 2014 .

[25]  H. Nägerl,et al.  Production of a dual-species Bose-Einstein condensate of Rb and Cs atoms , 2011, 1101.1409.

[26]  S. Will,et al.  Ultracold fermionic Feshbach molecules of 23Na40K. , 2012, Physical review letters.

[27]  K. Wilson The renormalization group: Critical phenomena and the Kondo problem , 1975 .

[28]  A. Rosch Quantum-coherent transport of a heavy particle in a fermionic bath , 1999 .

[29]  W. Marsden I and J , 2012 .

[30]  M. Inguscio,et al.  Degenerate Bose-Bose mixture in a three-dimensional optical lattice , 2007, 0706.2781.

[31]  H. Fröhlich Electrons in lattice fields , 1954 .

[32]  E. Demler,et al.  Radio-frequency spectroscopy of polarons in ultracold Bose gases , 2014, 1401.0952.

[33]  P. Hannaford,et al.  Measurement of s-wave scattering lengths in a two-component Bose-Einstein condensate , 2012, 1204.1591.

[34]  J. Devreese,et al.  Polaronic properties of an impurity in a Bose-Einstein condensate in reduced dimensions , 2012, 1203.4420.

[35]  F. Low,et al.  The Motion of Slow Electrons in a Polar Crystal , 1952 .

[36]  Richard Phillips Feynman,et al.  Slow Electrons in a Polar Crystal , 1955 .

[37]  Philip W. Anderson,et al.  Infrared Catastrophe in Fermi Gases with Local Scattering Potentials , 1967 .

[38]  J. Devreese Lectures on Fr\"ohlich Polarons from 3D to 0D - including detailed theoretical derivations , 2010, 1012.4576.

[39]  E. Timmermans,et al.  Self-localized impurities embedded in a one-dimensional Bose-Einstein condensate and their quantum fluctuations , 2006, cond-mat/0603454.

[40]  N. Andrei,et al.  Diagonalization of the Kondo Hamiltonian , 1980 .

[41]  S. R. Clark,et al.  Polaron Physics in Optical Lattices , 2007, 0704.2757.

[42]  M Inguscio,et al.  Fermi-Bose quantum degenerate 40K-87Rb mixture with attractive interaction. , 2002, Physical review letters.

[43]  D. Santamore,et al.  Multi-impurity polarons in a dilute Bose–Einstein condensate , 2011, 1111.1002.

[44]  Philip W. Anderson,et al.  Localized Magnetic States in Metals , 1961 .

[45]  M. Inguscio,et al.  Feshbach spectroscopy of a K-Rb atomic mixture , 2005, cond-mat/0510630.

[46]  R. Schmidt,et al.  Field-theoretical study of the Bose polaron , 2013, 1308.3457.

[47]  E. Demler,et al.  New theoretical approaches to Bose polarons , 2015, 1510.04934.

[48]  Randall G. Hulet,et al.  Observation of Fermi Pressure in a Gas of Trapped Atoms , 2001, Science.

[49]  Löwen,et al.  Proof of the nonexistence of (formal) phase transitions in polaron systems. I. , 1987, Physical review. B, Condensed matter.

[50]  Wan Shao-Long,et al.  Polaron in Bose–Einstein–Condensation System , 2009 .

[51]  M. Inguscio,et al.  Erratum: Feshbach spectroscopy of a K-Rb atomic mixture [Phys. Rev. A 73, 040702 (2006)] , 2006 .

[52]  M. Prutton,et al.  Reports on Progress in Physics , 1936, Nature.

[53]  E. Tiemann,et al.  Feshbach spectroscopy and scattering properties of ultracold Li + Na mixtures , 2012 .

[54]  D. Newns,et al.  A new functional integral formalism for the degenerate Anderson model , 1983 .

[55]  Michael Knap,et al.  Time-Dependent Impurity in Ultracold Fermions: Orthogonality Catastrophe and Beyond , 2012, 1206.4962.

[56]  Taylor Francis Online,et al.  Ultracold atomic gases in optical lattices: mimicking condensed matter physics and beyond , 2006, cond-mat/0606771.

[57]  M. Inguscio,et al.  Quantum dynamics of impurities in a one-dimensional Bose gas , 2011, 1106.0828.

[58]  Cheng Chin,et al.  Feshbach resonances in ultracold gases , 2008, 0812.1496.

[59]  A. Widera,et al.  Dynamics of single neutral impurity atoms immersed in an ultracold gas. , 2012, Physical review letters.

[60]  Boris V. Svistunov,et al.  POLARON PROBLEM BY DIAGRAMMATIC QUANTUM MONTE CARLO , 1998 .

[61]  Z Hadzibabic,et al.  Two-species mixture of quantum degenerate Bose and Fermi gases. , 2001, Physical review letters.

[62]  F. Klironomos,et al.  Phonon-mediated tuning of instabilities in the Hubbard model at half-filling , 2006, cond-mat/0604386.

[63]  Low temperature acoustic polaron localization , 2012, 1212.6739.

[64]  M. Köhl,et al.  Attractive and repulsive Fermi polarons in two dimensions , 2012, Nature.

[65]  E. Timmermans,et al.  Two polaron flavors of the Bose-Einstein condensate impurity , 2013 .

[66]  J. Devreese,et al.  Feynman path-integral treatment of the BEC-impurity polaron , 2009, 0906.4455.

[67]  H. Löwen,et al.  Analytical properties of polaron systems or: Do polaronic phase transitions exist or not? , 1991 .

[68]  P. Ahmadi,et al.  Quantum degenerate Bose-Fermi mixture of chemically different atomic species with widely tunable interactions , 2011, 1110.4552.

[69]  C. Pethick,et al.  Bose–Einstein Condensation in Dilute Gases: Contents , 2008 .

[70]  P. Massignan,et al.  Polarons, dressed molecules and itinerant ferromagnetism in ultracold Fermi gases , 2013, Reports on progress in physics. Physical Society.

[71]  J. E. Thomas,et al.  Polaron-to-polaron transitions in the radio-frequency spectrum of a quasi-two-dimensional Fermi gas. , 2012, Physical review letters.