Soliton-based return-to-zero transmission over transoceanic distances by periodic dispersion compensation

The accumulation of Gordon–Haus jitter can be effectively suppressed by the use of periodic dispersion compensation and in-line optical filters. The feasibility of 20-Gbit/s soliton-based transoceanic systems has been confirmed through 1000-km loop transmission experiments and 8100-km straight-line transmission experiments that employed periodic dispersion compensation. For a 20-Gbit/s, 9000-km transmission system, a Q2 of 19 dB, a sufficient power window of 2.5 dB, and robustness to repeater output power reduction have been demonstrated, as has compatibility with the conventional supervision scheme. A dramatic increase in system capacity can be expected from soliton wavelength-division multiplexing with periodic compensation of dispersion and its slope.

[1]  S. Akiba,et al.  22/spl times/5 Gbit/s, 9500 km transmission experiments using densely-spaced WDM channels and 980 nm pumped EDFA , 1997 .

[2]  N. Edagawa,et al.  Single-channel 40 Gbit/s, 5000 km straight-line soliton transmission experiment using periodic dispersion compensation , 1997, Proceedings of European Conference on Optical Communication.

[3]  N. Edagawa,et al.  20 Gbit/s-based soliton WDM transmission over transoceanic distances using periodic compensation of dispersion and its slope , 1997, Proceedings of European Conference on Optical Communication.

[4]  I. Morita,et al.  20-Gb/s single-channel soliton transmission over 9000 km without inline filters , 1996, IEEE Photonics Technology Letters.

[5]  M. A. Mills,et al.  Soliton WDM transmission with and without guiding filters , 1996, IEEE Photonics Technology Letters.

[6]  N. J. Smith,et al.  Enhanced power solitons in optical fibres with periodic dispersion management , 1996 .

[7]  I. Morita,et al.  Reduction of Gordon-Haus timing jitter by periodic dispersion compensation in soliton transmission , 1995 .

[8]  T. Montalant,et al.  20 Gbit/s soliton transmission over transoceanic distances with a 105 km amplifier span , 1995 .

[9]  M. Jones,et al.  Polarisation-independent 20 Gbit/s soliton data transmission over 12500 km using amplitude and phase modulation soliton transmission control , 1995 .

[10]  H. Nakazawa,et al.  Field demonstration of soliton transmission at 10 Gbit/s over 2000 km in Tokyo metropolitan optical loop network , 1995 .

[11]  F. Favre,et al.  20 Gbit/s soliton transmission over 19 Mm using sliding-frequency guiding filters , 1995 .

[12]  Y. Takahashi,et al.  Robustness of 20Gbit/s, 100km-spacing, 1000km soliton transmission system , 1995 .

[13]  Masataka Nakazawa,et al.  80 Gbit/s soliton data transmission over 500 km with unequal amplitude solitons for timing clock extraction , 1994 .

[14]  N. Edagawa,et al.  Feasibility demonstration of 20 Gbit/s single channel soliton transmission over 11500 km using alternating-amplitude solitons , 1994 .

[15]  E. Yamada,et al.  Straight-line soliton data transmissions over 2000 km at 20 Gbit/s and 1000 km at 40 Gbit/s using erbium-doped fibre amplifiers , 1993 .

[16]  Nick Doran,et al.  Reduction of Gordon-Haus jitter by post-transmission dispersion compensation , 1993 .

[17]  L. Mollenauer,et al.  Demonstration, using sliding-frequency guiding filters, of error-free soliton transmission over more than 20 Mm at 10 Gbit/s, single channel, and over more than 13 Mm at 20 Gbit/s in a two-channel WDM , 1993 .

[18]  N. S. Bergano,et al.  Margin measurements in optical amplifier system , 1993, IEEE Photonics Technology Letters.

[19]  Hirokazu Kubota,et al.  Experimental demonstration of soliton data transmission over unlimited distances with soliton control in time and frequency domains , 1993 .

[20]  N. Edagawa,et al.  New applications of a sinusoidally driven InGaAsP electroabsorption modulator to in-line optical gates with ASE noise reduction effect , 1992 .

[21]  J. Gordon,et al.  The sliding-frequency guiding filter: an improved form of soliton jitter control. , 1992, Optics letters.

[22]  N. Edagawa,et al.  Transform-limited optical pulse generation up to 20-GHz repetition rate by a sinusoidally driven InGaAsP electroabsorption modulator , 1992 .

[23]  Y. Matsushima,et al.  InGaAsP electroabsorption modulator for high-bit-rate EDFA system , 1992, IEEE Photonics Technology Letters.

[24]  H. Haus,et al.  Soliton transmission control. , 1991, Optics letters.

[25]  N. Doran,et al.  Average soliton dynamics and the operation of soliton systems with lumped amplifiers , 1991, IEEE Photonics Technology Letters.

[26]  Linn F. Mollenauer,et al.  Long-distance soliton propagation using lumped amplifiers and dispersion shifted fiber , 1991 .

[27]  A. Hasegawa,et al.  Guiding-center soliton in optical fibers. , 1990, Optics letters.

[28]  Hirokazu Kubota,et al.  Dynamic optical soliton communication , 1990 .

[29]  J. Gordon,et al.  Wavelength division multiplexing with solitons in ultra-long distance transmission using lumped amplifiers , 1990 .

[30]  H. Haus,et al.  Random walk of coherently amplified solitons in optical fiber transmission. , 1986, Optics letters.

[31]  Pak Lim Chu,et al.  Mutual interaction between solitons of unequal amplitudes in optical fibre , 1985 .

[32]  J. Gordon Interaction forces among solitons in optical fibers. , 1983, Optics letters.

[33]  Akira Hasegawa,et al.  Transmission of stationary nonlinear optical pulses in dispersive dielectric fibers. I. Anomalous dispersion , 1973 .

[34]  A. Hasegawa,et al.  Generation of asymptotically stable optical solitons and suppression of the Gordon-Haus effect. , 1992, Optics letters.