Evaluating the pathogenic potential of genes with de novo variants in epileptic encephalopathies

[1]  J. Conroy,et al.  Clinical spectrum and genotype‐phenotype associations of KCNA2‐related encephalopathies , 2017, Brain : a journal of neurology.

[2]  G. Mancini,et al.  Male patients affected by mosaic PCDH19 mutations: five new cases , 2017, neurogenetics.

[3]  Yi-wu Shi,et al.  Ion Channel Genes and Epilepsy: Functional Alteration, Pathogenic Potential, and Mechanism of Epilepsy , 2017, Neuroscience Bulletin.

[4]  M. Sasaki,et al.  A de novo missense mutation in SLC12A5 found in a compound heterozygote patient with epilepsy of infancy with migrating focal seizures , 2017, Clinical genetics.

[5]  D. Collier,et al.  Epilepsy-associated GRIN2A mutations reduce NMDA receptor trafficking and agonist potency – molecular profiling and functional rescue , 2017, Scientific Reports.

[6]  Yi-wu Shi,et al.  Epilepsy-associated genes , 2017, Seizure.

[7]  R. Pfundt,et al.  The molecular and phenotypic spectrum of IQSEC2‐related epilepsy , 2016, Epilepsia.

[8]  J. Rosenfeld,et al.  De novo and inherited mutations in the X-linked gene CLCN4 are associated with syndromic intellectual disability and behavior and seizure disorders in males and females , 2016, Molecular Psychiatry.

[9]  L. Lagae,et al.  Gain-of-function FHF1 mutation causes early-onset epileptic encephalopathy with cerebellar atrophy , 2016, Neurology.

[10]  D. Misceo,et al.  Delineating the GRIN1 phenotypic spectrum , 2016, Neurology.

[11]  R. Köhling,et al.  Potassium Channels in Epilepsy. , 2016, Cold Spring Harbor perspectives in medicine.

[12]  N. Matsumoto,et al.  WDR45 mutations in three male patients with West syndrome , 2016, Journal of Human Genetics.

[13]  R. Combi,et al.  Potassium Channels and Human Epileptic Phenotypes: An Updated Overview , 2016, Front. Cell. Neurosci..

[14]  J. Hurst,et al.  Improving diagnosis and broadening the phenotypes in early-onset seizure and severe developmental delay disorders through gene panel analysis , 2016, Journal of Medical Genetics.

[15]  I. Scheffer,et al.  The genetic landscape of the epileptic encephalopathies of infancy and childhood , 2016, The Lancet Neurology.

[16]  Ayal B. Gussow,et al.  The intolerance to functional genetic variation of protein domains predicts the localization of pathogenic mutations within genes , 2016, Genome Biology.

[17]  M. Mikati,et al.  Epileptic spasms: a previously unreported manifestation of WDR45 gene mutation. , 2015, Epileptic disorders.

[18]  Naomichi Matsumoto,et al.  De novo KCNB1 mutations in infantile epilepsy inhibit repetitive neuronal firing , 2015, Scientific Reports.

[19]  Katsuhiro Kobayashi,et al.  Late-onset epileptic spasms in a female patient with a CASK mutation , 2015, Brain and Development.

[20]  Heidi L Rehm,et al.  ClinGen--the Clinical Genome Resource. , 2015, The New England journal of medicine.

[21]  B. Li,et al.  The SCN1A Mutation Database: Updating Information and Analysis of the Relationships among Genotype, Functional Alteration, and Phenotype , 2015, Human mutation.

[22]  G. Carvill,et al.  Mutations in the GABA Transporter SLC6A1 Cause Epilepsy with Myoclonic-Atonic Seizures. , 2015, American journal of human genetics.

[23]  Dong Xu,et al.  The Human Epilepsy Mutation GABRG2(Q390X) Causes Chronic Subunit Accumulation and Neurodegeneration , 2015, Nature Neuroscience.

[24]  Michael R. Johnson,et al.  Epileptic encephalopathy-causing mutations in DNM1 impair synaptic vesicle endocytosis , 2015, Neurology: Genetics.

[25]  Y. Wada,et al.  A new case of UDP-galactose transporter deficiency (SLC35A2-CDG): molecular basis, clinical phenotype, and therapeutic approach , 2015, Journal of Inherited Metabolic Disease.

[26]  Bale,et al.  Standards and Guidelines for the Interpretation of Sequence Variants: A Joint Consensus Recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology , 2015, Genetics in Medicine.

[27]  M. Migliore,et al.  Early-Onset Epileptic Encephalopathy Caused by Gain-of-Function Mutations in the Voltage Sensor of Kv7.2 and Kv7.3 Potassium Channel Subunits , 2015, The Journal of Neuroscience.

[28]  K. Friend,et al.  X-exome sequencing of 405 unresolved families identifies seven novel intellectual disability genes , 2015, Molecular Psychiatry.

[29]  N. Burnashev,et al.  NMDA receptor subunit mutations in neurodevelopmental disorders. , 2015, Current opinion in pharmacology.

[30]  N. Matsumoto,et al.  SPTAN1 encephalopathy: distinct phenotypes and genotypes , 2015, Journal of Human Genetics.

[31]  L. Kaczmarek,et al.  Human slack potassium channel mutations increase positive cooperativity between individual channels. , 2014, Cell reports.

[32]  R. L. Bjork,et al.  De novo KCNB1 mutations in epileptic encephalopathy , 2014, Annals of neurology.

[33]  A. Scimemi Structure, function, and plasticity of GABA transporters , 2014, Front. Cell. Neurosci..

[34]  D. G. MacArthur,et al.  Guidelines for investigating causality of sequence variants in human disease , 2014, Nature.

[35]  Oriane Trouillard,et al.  De novo mutations in HCN1 cause early infantile epileptic encephalopathy , 2014, Nature Genetics.

[36]  R. Neubig,et al.  Gain-of-function mutation in Gnao1: A murine model of epileptiform encephalopathy (EIEE17)? , 2014, Mammalian Genome.

[37]  I. Scheffer,et al.  KCNT1 gain of function in 2 epilepsy phenotypes is reversed by quinidine , 2014, Annals of neurology.

[38]  I. Scheffer,et al.  Dominant‐negative effects of KCNQ2 mutations are associated with epileptic encephalopathy , 2014, Annals of neurology.

[39]  D. Adams,et al.  Functional Analysis of a De Novo GRIN2A Missense Mutation Associated with Early-onset Epileptic Encephalopathy , 2014, Nature Communications.

[40]  Markus Wolff,et al.  GRIN2B Mutations in West Syndrome and Intellectual Disability with Focal Epilepsy , 2014, Annals of neurology.

[41]  Y. Wada,et al.  De Novo Mutations in SLC35A2 Encoding a UDP‐Galactose Transporter Cause Early‐Onset Epileptic Encephalopathy , 2013, Human mutation.

[42]  Holger Lerche,et al.  De novo loss-of-function mutations in CHD2 cause a fever-sensitive myoclonic epileptic encephalopathy sharing features with Dravet syndrome. , 2013, American journal of human genetics.

[43]  Naomichi Matsumoto,et al.  De Novo mutations in GNAO1, encoding a Gαo subunit of heterotrimeric G proteins, cause epileptic encephalopathy. , 2013, American journal of human genetics.

[44]  U. Stephani,et al.  Mutations in GRIN2A cause idiopathic focal epilepsy with rolandic spikes , 2013, Nature Genetics.

[45]  Emily H Turner,et al.  Mosaicism of the UDP-galactose transporter SLC35A2 causes a congenital disorder of glycosylation. , 2013, American journal of human genetics.

[46]  C. Reid,et al.  Multiple molecular mechanisms for a single GABAA mutation in epilepsy , 2013, Neurology.

[47]  R. Scott,et al.  A population‐based study of newly diagnosed epilepsy in infants , 2013, Epilepsia.

[48]  M. Migliore,et al.  Genotype–phenotype correlations in neonatal epilepsies caused by mutations in the voltage sensor of Kv7.2 potassium channel subunits , 2013, Proceedings of the National Academy of Sciences.

[49]  Bradley P. Coe,et al.  Multiplex Targeted Sequencing Identifies Recurrently Mutated Genes in Autism Spectrum Disorders , 2012, Science.

[50]  T. Wieland,et al.  Exome sequencing reveals de novo WDR45 mutations causing a phenotypically distinct, X-linked dominant form of NBIA. , 2012, American journal of human genetics.

[51]  R. Guerrini,et al.  Epilepsy in Rett syndrome, and CDKL5‐ and FOXG1‐gene–related encephalopathies , 2012, Epilepsia.

[52]  L. Kaczmarek,et al.  De novo gain-of-function KCNT1 channel mutations cause malignant migrating partial seizures of infancy , 2012, Nature Genetics.

[53]  Katherine R. Smith,et al.  Missense mutations in the sodium-gated potassium channel gene KCNT1 cause severe autosomal dominant nocturnal frontal lobe epilepsy , 2012, Nature Genetics.

[54]  K. Boyd,et al.  Decreased viability and absence‐like epilepsy in mice lacking or deficient in the GABAA receptor α1 subunit , 2012, Epilepsia.

[55]  H. Kurahashi,et al.  Clinical spectrum of SCN2A mutations , 2012, Brain and Development.

[56]  J. Veltman,et al.  De novo mutations in human genetic disease , 2012, Nature Reviews Genetics.

[57]  Lieven Lagae,et al.  KCNQ2 encephalopathy: Emerging phenotype of a neonatal epileptic encephalopathy , 2012, Annals of neurology.

[58]  C. Depienne,et al.  STXBP1‐related encephalopathy presenting as infantile spasms and generalized tremor in three patients , 2011, Epilepsia.

[59]  R. Huganir,et al.  Excess of de novo deleterious mutations in genes associated with glutamatergic systems in nonsyndromic intellectual disability. , 2011, American journal of human genetics.

[60]  F. Rivier,et al.  Mutations and Deletions in PCDH19 Account for Various Familial or Isolated Epilepsies in Females , 2011, Human mutation.

[61]  H. Arai,et al.  STXBP1 mutations in early infantile epileptic encephalopathy with suppression‐burst pattern , 2010, Epilepsia.

[62]  H. Ropers,et al.  Mutations in GRIN2A and GRIN2B encoding regulatory subunits of NMDA receptors cause variable neurodevelopmental phenotypes , 2010, Nature Genetics.

[63]  Kate M. Lawrence,et al.  Familial Lennox‐Gastaut syndrome in male siblings with a novel DCX mutation and anterior pachygyria , 2010, Epilepsia.

[64]  C. Mahaffey,et al.  A Missense Mutation in a Highly Conserved Alternate Exon of Dynamin-1 Causes Epilepsy in Fitful Mice , 2010, PLoS genetics.

[65]  M. Komada,et al.  Dominant-negative mutations in alpha-II spectrin cause West syndrome with severe cerebral hypomyelination, spastic quadriplegia, and developmental delay. , 2010, American journal of human genetics.

[66]  M. Walker,et al.  Loss of Dendritic HCN1 Subunits Enhances Cortical Excitability and Epileptogenesis , 2009, The Journal of Neuroscience.

[67]  M. Ruberg,et al.  Sporadic Infantile Epileptic Encephalopathy Caused by Mutations in PCDH19 Resembles Dravet Syndrome but Mainly Affects Females , 2009, PLoS genetics.

[68]  Melinda S. Martin,et al.  The voltage-gated sodium channel Scn8a is a genetic modifier of severe myoclonic epilepsy of infancy. , 2007, Human molecular genetics.

[69]  P. Georgel,et al.  CHD proteins: a diverse family with strong ties. , 2007, Biochemistry and cell biology = Biochimie et biologie cellulaire.

[70]  P. De Camilli,et al.  A Selective Activity-Dependent Requirement for Dynamin 1 in Synaptic Vesicle Endocytosis , 2007, Science.

[71]  I. Scheffer,et al.  Benign familial neonatal‐infantile seizures: Characterization of a new sodium channelopathy , 2004, Annals of neurology.

[72]  T. Jentsch Neuronal KCNQ potassium channels:physislogy and role in disease , 2000, Nature Reviews Neuroscience.

[73]  E. Masliah,et al.  Neuronal Death and Perinatal Lethality in Voltage-Gated Sodium Channel αII-Deficient Mice , 2000 .

[74]  Stéphanie Baulac,et al.  Mutations of SCN1A, encoding a neuronal sodium channel, in two families with GEFS+2 , 2000, Nature Genetics.

[75]  S. Hirose Mutant GABA(A) receptor subunits in genetic (idiopathic) epilepsy. , 2014, Progress in brain research.

[76]  E. Masliah,et al.  Neuronal death and perinatal lethality in voltage-gated sodium channel alpha(II)-deficient mice. , 2000, Biophysical journal.

[77]  D. Misceo,et al.  Delineating the GRIN1 phenotypic spectrum A distinct genetic NMDA receptor encephalopathy , 2022 .