FastMap, MetricMap, and Landmark MDS are all Nystrom Algorithms

This paper unifies the mathematical foundation of three multidimen- sional scaling algorithms: FastMap, MetricMap, and Landmark MDS (LMDS). All three algorithms are based on the Nystrom approximation of the eigenvectors and eigenvalues of a matrix. LMDS is applies the basic Nystrom approximation, while FastMap and MetricMap use generaliza- tions of Nystrom, including deflation and using more points to establish an embedding. Empirical experiments on the Reuters and Corel Image Features data sets show that the basic Nystrom approximation outper- forms these generalizations: LMDS is more accurate than FastMap and MetricMap with roughly the same computation and can become even more accurate if allowed to be slower.

[1]  Gerald W. Kimble,et al.  Information and Computer Science , 1975 .

[2]  Bruno O. Shubert,et al.  Random variables and stochastic processes , 1979 .

[3]  Gene H. Golub,et al.  Matrix computations , 1983 .

[4]  John G. Proakis,et al.  Probability, random variables and stochastic processes , 1985, IEEE Trans. Acoust. Speech Signal Process..

[5]  T. Landauer,et al.  Indexing by Latent Semantic Analysis , 1990 .

[6]  Christos Faloutsos,et al.  FastMap: a fast algorithm for indexing, data-mining and visualization of traditional and multimedia datasets , 1995, SIGMOD '95.

[7]  Matthew Chalmers,et al.  A linear iteration time layout algorithm for visualising high-dimensional data , 1996, Proceedings of Seventh Annual IEEE Visualization '96.

[8]  Kaizhong Zhang,et al.  Evaluating a class of distance-mapping algorithms for data mining and clustering , 1999, KDD '99.

[9]  J. Tenenbaum,et al.  A global geometric framework for nonlinear dimensionality reduction. , 2000, Science.

[10]  Bernhard Schölkopf,et al.  The Kernel Trick for Distances , 2000, NIPS.

[11]  Christopher K. I. Williams,et al.  Using the Nyström Method to Speed Up Kernel Machines , 2000, NIPS.

[12]  Jitendra Malik,et al.  Spectral Partitioning with Indefinite Kernels Using the Nyström Extension , 2002, ECCV.

[13]  Joshua B. Tenenbaum,et al.  Global Versus Local Methods in Nonlinear Dimensionality Reduction , 2002, NIPS.

[14]  Nicolas Le Roux,et al.  Out-of-Sample Extensions for LLE, Isomap, MDS, Eigenmaps, and Spectral Clustering , 2003, NIPS.

[15]  J. Platt Fast embedding of sparse music similarity graphs , 2003, NIPS 2003.

[16]  Tamara Munzner,et al.  Steerable, Progressive Multidimensional Scaling , 2004, IEEE Symposium on Information Visualization.

[17]  Susan A. Murphy,et al.  Monographs on statistics and applied probability , 1990 .