Multicolor cavity metrology.

Long-baseline laser interferometers used for gravitational-wave detection have proven to be very complicated to control. In order to have sufficient sensitivity to astrophysical gravitational waves, a set of multiple coupled optical cavities comprising the interferometer must be brought into resonance with the laser field. A set of multi-input, multi-output servos then lock these cavities into place via feedback control. This procedure, known as lock acquisition, has proven to be a vexing problem and has reduced greatly the reliability and duty factor of the past generation of laser interferometers. In this article, we describe a technique for bringing the interferometer from an uncontrolled state into resonance by using harmonically related external fields to provide a deterministic hierarchical control. This technique reduces the effect of the external seismic disturbances by 4 orders of magnitude and promises to greatly enhance the stability and reliability of the current generation of gravitational-wave detectors. The possibility for using multicolor techniques to overcome current quantum and thermal noise limits is also discussed.

[1]  R. Adhikari,et al.  A new bound on excess frequency noise in second harmonic generation in PPKTP at the 10⁻¹⁹ level. , 2012, Optics express.

[2]  K. Strain,et al.  Damping and local control of mirror suspensions for laser interferometric gravitational wave detectors. , 2012, The Review of scientific instruments.

[3]  Daniel A Shaddock,et al.  Arm-length stabilisation for interferometric gravitational-wave detectors using frequency-doubled auxiliary lasers. , 2011, Optics express.

[4]  Pierre Thomann,et al.  Frequency discriminators for the characterization of narrow-spectrum heterodyne beat signals: application to the measurement of a sub-hertz carrier-envelope-offset beat in an optical frequency comb. , 2011, The Review of scientific instruments.

[5]  Vincent Loriette,et al.  Status of the Virgo project , 2011 .

[6]  F. Khalili,et al.  Negative optical inertia for enhancing the sensitivity of future gravitational-wave detectors , 2010, 1010.1124.

[7]  G. M. Harry,et al.  Advanced LIGO: the next generation of gravitational wave detectors , 2010 .

[8]  Interferometric testbed for nanometer level stabilization of environmental motion over long time scales. , 2008, Applied optics.

[9]  N. Leroy,et al.  Lock acquisition of the Virgo gravitational wave detector , 2008 .

[10]  M. Fejer,et al.  Thermo-optic noise in coated mirrors for high-precision optical measurements , 2008, 0807.4774.

[11]  R. Taylor,et al.  dc readout experiment at the Caltech 40m prototype interferometer , 2008 .

[12]  Daniel A Shaddock Digitally enhanced heterodyne interferometry. , 2007, Optics letters.

[13]  D. Shaddock,et al.  Coherent range-gated laser displacement metrology with compact optical head. , 2007, Optics letters.

[14]  Karsten Danzmann,et al.  Local readout enhancement for detuned signal-recycling interferometers , 2007 .

[15]  M. Fejer,et al.  Titania-doped tantala/silica coatings for gravitational-wave detection , 2006, gr-qc/0610004.

[16]  Robert W. Taylor,et al.  Measurement of optical response of a detuned resonant sideband extraction gravitational wave detector , 2006, gr-qc/0604078.

[17]  K. Kuroda,et al.  The status of LCGT , 2006 .

[18]  Robert W. Taylor,et al.  Lock Acquisition Scheme For The Advanced LIGO Optical configuration , 2006 .

[19]  Dynamics of cw intra-cavity second harmonic generation by PPKTP , 2004 .

[20]  K. Kawabe,et al.  Stabilization of a Fabry-Perot interferometer using a suspension-point interferometer , 2004, gr-qc/0404048.

[21]  Joshua R. Smith,et al.  The status of GEO 600 , 2004, SPIE Astronomical Telescopes + Instrumentation.

[22]  W. Kells,et al.  Lock acquisition of a gravitational-wave interferometer. , 2002, Optics letters.

[23]  A. Buonanno,et al.  Signal recycled laser-interferometer gravitational-wave detectors as optical springs , 2001, gr-qc/0107021.

[24]  G. Gonz'alez Suspensions thermal noise in the LIGO gravitational wave detector , 2000, gr-qc/0006053.

[25]  Barry C. Barish,et al.  The Laser Interferometer Gravitational-Wave Observatory LIGO , 2000 .

[26]  Guided lock acquisition in a suspended Fabry-Perot cavity. , 1995, Optics letters.

[27]  A. Rüdiger,et al.  Resonant sideband extraction: a new configuration for interferometric gravitational wave detectors , 1993 .

[28]  Joshua R. Smith,et al.  LIGO: the Laser Interferometer Gravitational-Wave Observatory , 1992, Science.

[29]  Dan H. Wolaver,et al.  Phase-Locked Loop Circuit Design , 1991 .

[30]  B. J. Meers,et al.  Recycling in laser-interferometric gravitational-wave detectors. , 1988, Physical review. D, Particles and fields.

[31]  John L. Hall,et al.  Laser phase and frequency stabilization using an optical resonator , 1983 .