Spatiotemporal changes in the pressure-driven current densities on DIII-D due to magnetic islands

Using direct analysis of the motional Stark effect (MSE) signals, an explicit measurement of the ‘missing’ bootstrap current density around the island location of a neoclassical tearing mode (NTM) is made for the first time. When the NTM is suppressed using co-electron cyclotron current drive, the measured changes in the current profile that restore the bootstrap current are also directly found from the MSE measurements. Additionally, direct analysis of helical perturbations in the MSE signals during slowly rotating ‘quasi-stationary’ modes shows the first explicit measurement of the deficit in the toroidal current density in the island O-point.

[1]  T. Luce,et al.  Effect of Particle Transport on the Measured Electron Cyclotron Current Drive Profile at High Relative Power Density , 2010 .

[2]  M. Wade,et al.  Magnetic-flux pumping in high-performance, stationary plasmas with tearing modes. , 2009, Physical review letters.

[3]  D. A. Humphreys,et al.  Stabilization and prevention of the 2/1 neoclassical tearing mode for improved performance in DIII-D , 2007 .

[4]  T. Fujita,et al.  Observation of the bootstrap current reduction at magnetic island in a neoclassical tearing mode plasma , 2005 .

[5]  Y. Lin-Liu,et al.  Direct measurement of neoclassical currents using motional Stark effect polarimetry , 2005 .

[6]  T. Fujita,et al.  Evolution of the current density profile associated with magnetic island formation in JT-60U. , 2005, Physical review letters.

[7]  T. Rhodes,et al.  Observation of magnetohydrodynamic instability and direct measurement of local perturbed magnetic field using motional Stark effect diagnostic , 2004 .

[8]  Olivier Sauter,et al.  Integrated scenario in JET using real-time profile control , 2003 .

[9]  Kozo Yamazaki,et al.  Achievement of high fusion triple product, steady-state sustainment and real-time NTM stabilization in high-βp ELMy H-mode discharges in JT-60U , 2003 .

[10]  E. J. Strait,et al.  COMPLETE SUPPRESSION OF THE M=2/N-1 NEOCLASSICAL TEARING MODE USING ELECTRON CYCLOTRON CURRENT DRIVE ON DIII-D , 2003 .

[11]  Martin Jakobi,et al.  Steady state advanced scenarios at ASDEX Upgrade , 2002 .

[12]  O. Sauter,et al.  Erratum: “Neoclassical conductivity and bootstrap current formulas for general axisymmetric equilibria and arbitrary collisionality regime” [Phys. Plasmas 6, 2834 (1999)] , 2002 .

[13]  T. Luce,et al.  Analysis of current drive using MSE polarimetry without equilibrium reconstruction , 2002 .

[14]  O. Sauter,et al.  Radial transport and electron-cyclotron-current drive in the TCV and DIII-D tokamaks. , 2002, Physical review letters.

[15]  D. A. Humphreys,et al.  CONTROL OF NEOCLASSICAL TEARING MODES IN DIII-D , 2001 .

[16]  G. Gantenbein,et al.  Analysis of the structure of neoclassical tearing modes in ASDEX Upgrade , 2001 .

[17]  L. L. Lao,et al.  Progress toward long-pulse high-performance Advanced Tokamak discharges on the DIII-D tokamak , 2001 .

[18]  K. Kajiwara,et al.  Complete stabilization of a tearing mode in steady state high-βp H-mode discharges by the first harmonic electron cyclotron heating/current drive on JT-60U , 2000 .

[19]  L. L. Lao,et al.  LONG-PULSE, HIGH-PERFORMANCE DISCHARGES IN THE DIII-D TOKAMAK , 2000 .

[20]  Gunter,et al.  Complete suppression of neoclassical tearing modes with current drive at the electron-cyclotron-resonance frequency in ASDEX upgrade tokamak , 2000, Physical review letters.

[21]  R. J. Buttery,et al.  Dimensionless scaling of the critical beta for onset of a neoclassical tearing mode , 2000 .

[22]  G. Giruzzi,et al.  RF current drive by electron cyclotron waves in the presence of magnetic islands , 2000 .

[23]  O. Sauter,et al.  Neoclassical conductivity and bootstrap current formulas for general axisymmetric equilibria and arbitrary collisionality regime , 1999 .

[24]  L. L. Lao,et al.  SIMULTANEOUS MEASUREMENT OF Q AND ER PROFILES USING THE MOTIONAL STARK EFFECT IN HIGH-PERFORMANCE DIII-D PLASMAS (INVITED) , 1999 .

[25]  S. Günter,et al.  Modeling of the nonlinear growth of neoclassical tearing modes , 1998 .

[26]  L. L. Lao,et al.  Direct Measurement of the Radial Electric Field in Tokamak Plasmas using the Stark Effect , 1997 .

[27]  McGuire,et al.  Observation of nonlinear neoclassical pressure-gradient-driven tearing modes in TFTR. , 1995, Physical review letters.

[28]  L. Lao,et al.  Polarimetry of motional Stark effect and determination of current profiles in DIII-D (invited) , 1992 .

[29]  L. L. Lao,et al.  Equilibrium analysis of current profiles in tokamaks , 1990 .

[30]  Roberts,et al.  Magnetic field pitch-angle measurments in the PBX-M tokamak using the motional Stark effect. , 1989, Physical review letters.

[31]  K. Matsuda,et al.  Ray tracing study of the electron cyclotron current drive in DIII-D using 60 GHz , 1989 .

[32]  R. Cohen Effect of trapped electrons on current drive , 1987 .

[33]  R. Carrera,et al.  Island bootstrap current modification of the nonlinear dynamics of the tearing mode , 1986 .

[34]  S. Hirshman Neoclassical current in a toroidally‐confined multispecies plasma , 1977 .

[35]  F. Hinton,et al.  Theory of plasma transport in toroidal confinement systems , 1976 .

[36]  Paul H. Rutherford,et al.  Nonlinear growth of the tearing mode , 1973 .

[37]  J. Ferron,et al.  Tearing Mode Suppression as Part of a Comprehensive Real-Time Disruption Avoidance and Mitigation System , 2005 .

[38]  E. Poli,et al.  Modeling of nonlinear electron cyclotron resonance heating and current drive in a tokamak , 2005 .

[39]  T. Fujita,et al.  Direct Evaluation of Spatio-Temporal Change in Current Density Profile Applied to a Discharge with Neo-Classical Tearing Mode , 2004 .

[40]  Tadashi Sekiguchi,et al.  Plasma Physics and Controlled Nuclear Fusion Research , 1987 .