Dynamics and topology in complex networks

Esta Tesis se centra en tres aspectos de uno de los ingredientes esenciales de la ciencia de los sistemas complejos, la llamada teoria de las redes complejas. En primer lugar, se usa esta teoria para analizar la red de colaboraciones cientificas entre los participantes del llamado programa marco. Buscamos que estructura descrita esta iniciativa y analizamos como contribuyente la industria y las universidades a mejorar la relacion investigacion/aplicaciones. En segundo lugar se estudian las consecuencias que tiene la topologia en los grupos sociales organizadas jerarquicamente con lso que, ademas, consideramos que las relaciones horizontales estan presentes. Posteriormente abordamos desde la perspectiva de la teoria de juegos si es posible repartir un recurso escaso de forma equitativa cuando la organizacion es no jerarquica. Por ultimo, analizamos las propiedades del oscilador de Helmholtz y calculamos mediante la teoria de Lie para ecuaciones diferenciales sus soluciones. Una vez familiarizados con los osciladores no lineales y sus dificultades analisticas, pasamos a estudiar las sincronozabilidad de neuronas tipo Hodgkin-Huxley cuando las conexiones forman una red de tipo "Small -World" y las hay de tipo atractivo y repulsivo.

[1]  Albert-László Barabási,et al.  Statistical mechanics of complex networks , 2001, ArXiv.

[2]  Michael Luby,et al.  A digital fountain approach to reliable distribution of bulk data , 1998, SIGCOMM '98.

[3]  B. Chirikov A universal instability of many-dimensional oscillator systems , 1979 .

[4]  A. Vespignani,et al.  The architecture of complex weighted networks. , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[5]  Albert,et al.  Emergence of scaling in random networks , 1999, Science.

[6]  J. Kurths,et al.  Network synchronization, diffusion, and the paradox of heterogeneity. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[7]  D. Mason,et al.  Compartments revealed in food-web structure , 2003, Nature.

[8]  S. Strogatz Exploring complex networks , 2001, Nature.

[9]  E. V. Bogdanova-Ryzhova,et al.  Solitary-like waves in boundary-layer flows and their randomization , 1995, Philosophical Transactions of the Royal Society of London. Series A: Physical and Engineering Sciences.

[10]  Martin Hasler,et al.  Synchronization of bursting neurons: what matters in the network topology. , 2005, Physical review letters.

[11]  Andrei Z. Broder,et al.  Graph structure in the Web , 2000, Comput. Networks.

[12]  A. Selverston,et al.  Dynamical principles in neuroscience , 2006 .

[13]  Ricard V. Solé,et al.  Self-organized critical traffic in parallel computer networks , 2002 .

[14]  A Díaz-Guilera,et al.  Communication in networks with hierarchical branching. , 2001, Physical review letters.

[15]  M. A. Muñoz,et al.  Entangled networks, synchronization, and optimal network topology. , 2005, Physical review letters.

[16]  F Moss,et al.  Synchronization of hyperexcitable systems with phase-repulsive coupling. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[17]  Jim M Cushing,et al.  ESTIMATING CHAOS AND COMPLEX DYNAMICS IN AN INSECT POPULATION , 2001 .

[18]  Ying Lu,et al.  Attraction of spiral waves by localized inhomogeneities with small-world connections in excitable media. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[19]  L. Amaral,et al.  Small-World Networks: Evidence for a Crossover Picture , 1999, cond-mat/9903108.

[20]  Edward A. Bender,et al.  The Asymptotic Number of Labeled Graphs with Given Degree Sequences , 1978, J. Comb. Theory A.

[21]  G. T. Csanady,et al.  Wave interactions and fluid flows , 1987 .

[22]  J. Mendes,et al.  Hierarchical social networks and information flow , 2002 .

[23]  T. Carroll,et al.  Master Stability Functions for Synchronized Coupled Systems , 1998 .

[24]  David Golomb,et al.  The Number of Synaptic Inputs and the Synchrony of Large, Sparse Neuronal Networks , 2000, Neural Computation.

[25]  A. Hodgkin,et al.  A quantitative description of membrane current and its application to conduction and excitation in nerve , 1952, The Journal of physiology.

[26]  R. Albert,et al.  The large-scale organization of metabolic networks , 2000, Nature.

[27]  Duncan J. Watts,et al.  Six Degrees: The Science of a Connected Age , 2003 .

[28]  Béla Bollobás,et al.  Random Graphs , 1985 .

[29]  Stefano Mossa,et al.  Truncation of power law behavior in "scale-free" network models due to information filtering. , 2002, Physical review letters.

[30]  Frank Moss,et al.  Increased phase synchronization of spontaneous calcium oscillations in epileptic human versus normal rat astrocyte cultures. , 2003, Chaos.

[31]  M. Sanjuán,et al.  Letters to the editorComments on the Hamiltonian formulation for linear and non-linear oscillators including dissipation , 1995 .

[32]  Alexandre Arenas,et al.  Optimal network topologies for local search with congestion , 2002, Physical review letters.

[33]  Gerald L Detter RICH GET RICHER , 1999 .

[34]  K. Goh,et al.  Spectra and eigenvectors of scale-free networks. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[35]  Martin Suter,et al.  Small World , 2002 .

[36]  Miguel A. F. Sanjuán,et al.  Oblivious router policies and Nash equilibrium , 2004, Proceedings. ISCC 2004. Ninth International Symposium on Computers And Communications (IEEE Cat. No.04TH8769).

[37]  M. Newman Models of the Small World: A Review , 2000, cond-mat/0001118.

[38]  Jon M. Kleinberg,et al.  The Web as a Graph: Measurements, Models, and Methods , 1999, COCOON.

[39]  Güler Ergün Human sexual contact network as a bipartite graph , 2001 .

[40]  M E J Newman,et al.  Fast algorithm for detecting community structure in networks. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[41]  L F Lago-Fernández,et al.  Fast response and temporal coherent oscillations in small-world networks. , 1999, Physical review letters.

[42]  S. Boccaletti,et al.  Synchronization is enhanced in weighted complex networks. , 2005, Physical review letters.

[43]  C. Eugene Wayne,et al.  Weak Chaos and Quasi-Regular Patterns. By G. M. ZASLAVSKY, R. Z. SAGDEEV, D. A. USIKOV and A. A CHERNIKOV. Cambridge University Press, 1991. 253 pp. £40 or $75 , 1992, Journal of Fluid Mechanics.

[44]  Sergey N. Dorogovtsev,et al.  The shortest path to complex networks , 2004, ArXiv.

[45]  S. Havlin,et al.  Self-similarity of complex networks , 2005, Nature.

[46]  P. Olver Applications of Lie Groups to Differential Equations , 1986 .

[47]  M. Newman,et al.  Random graphs with arbitrary degree distributions and their applications. , 2000, Physical review. E, Statistical, nonlinear, and soft matter physics.

[48]  B. Wellman Computer Networks As Social Networks , 2001, Science.

[49]  Robin I. M. Dunbar Coevolution of neocortical size, group size and language in humans , 1993, Behavioral and Brain Sciences.

[50]  Sorin Solomon,et al.  Complexity; a science at 30 , 2003 .

[51]  L S Tsimring,et al.  Repulsive synchronization in an array of phase oscillators. , 2005, Physical review letters.

[52]  Sharon L. Milgram,et al.  The Small World Problem , 1967 .

[53]  M. Kuperman,et al.  Small world effect in an epidemiological model. , 2000, Physical review letters.

[54]  Miguel A F Sanjuán,et al.  Relation between structure and size in social networks. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[55]  T. Apostol Mathematical Analysis , 1957 .

[56]  S. Neukirch,et al.  Integrals of motion and the shape of the attractor for the Lorenz model , 1997, chao-dyn/9702016.

[57]  Robin I. M. Dunbar CO-EVOLUTION OF NEOCORTEX SIZE , GROUP SIZE AND LANGUAGE IN HUMANS , 2008 .

[58]  L. Amaral,et al.  Erratum: Small-World Networks: Evidence for a Crossover Picture [Phys. Rev. Lett. 82, 3180 (1999)] , 1999, cond-mat/9906247.

[59]  Kenneth Showalter,et al.  Spatiotemporal dynamics of networks of excitable nodes. , 2006, Chaos.

[60]  G. Davis,et al.  Corporate Elite Networks and Governance Changes in the 1980s , 1997, American Journal of Sociology.

[61]  M. Newman,et al.  Renormalization Group Analysis of the Small-World Network Model , 1999, cond-mat/9903357.

[62]  Jie Wu,et al.  Small Worlds: The Dynamics of Networks between Order and Randomness , 2003 .

[63]  Kenneth Showalter,et al.  Spatiotemporal networks in addressable excitable media. , 2005, Physical review letters.

[64]  M. Newman,et al.  Mixing patterns in networks. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[65]  M. Lakshmanan,et al.  On the exact solutions of the duffing oscillator , 1990 .

[66]  Adilson E Motter,et al.  Heterogeneity in oscillator networks: are smaller worlds easier to synchronize? , 2003, Physical review letters.

[67]  Rahul Garg,et al.  A game-theoretic approach towards congestion control in communication networks , 2002, CCRV.

[68]  Pan-Jun Kim,et al.  Pattern formation in a two-dimensional array of oscillators with phase-shifted coupling. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[69]  Albert-László Barabási,et al.  Internet: Diameter of the World-Wide Web , 1999, Nature.

[70]  Miguel A F Sanjuán,et al.  Integrability and symmetries for the Helmholtz oscillator with friction , 2003 .

[71]  J. M. T. Thompson,et al.  Chaotic Phenomena Triggering the Escape from a Potential Well , 1991 .

[72]  M. Tabor Modern dynamics and classical analysis , 1984, Nature.

[73]  Marginal stability boundaries for some driven, damped, non-linear oscillators , 1987 .

[74]  Michalis Faloutsos,et al.  On power-law relationships of the Internet topology , 1999, SIGCOMM '99.

[75]  H E Stanley,et al.  Classes of small-world networks. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[76]  Eitan Altman,et al.  Competitive routing in networks with polynomial costs , 2002, IEEE Trans. Autom. Control..

[77]  Structure of the stochastic layer of a perturbed double-well potential system , 1985 .

[78]  Mauricio Barahona,et al.  Synchronization in small-world systems. , 2002, Physical review letters.

[79]  S Boccaletti,et al.  In phase and antiphase synchronization of coupled homoclinic chaotic oscillators. , 2004, Chaos.

[80]  S. N. Dorogovtsev,et al.  Scaling properties of scale-free evolving networks: continuous approach. , 2000, Physical review. E, Statistical, nonlinear, and soft matter physics.

[81]  Ricard V. Solé,et al.  Phase Transitions in a Model of Internet Traffic , 2000 .

[82]  M. Tabor,et al.  Analytic structure of the Henon–Heiles Hamiltonian in integrable and nonintegrable regimes , 1982 .

[83]  Mark Newman,et al.  The structure and function of networks , 2002 .

[84]  Albert-László Barabási,et al.  Error and attack tolerance of complex networks , 2000, Nature.

[85]  Reinhard Lipowsky,et al.  Dynamic pattern evolution on scale-free networks. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[86]  S. Havlin,et al.  Scale-free networks are ultrasmall. , 2002, Physical review letters.

[87]  Willi-Hans Steeb,et al.  On exact solutions for damped anharmonic oscillators , 1989 .

[88]  Lixin Gao On inferring autonomous system relationships in the internet , 2001, TNET.

[89]  A. Vázquez Disordered networks generated by recursive searches , 2001 .

[90]  Miguel A. F. Sanjuán,et al.  Information flow in generalized hierarchical networks , 2003 .

[91]  F. Ball,et al.  Epidemics with two levels of mixing , 1997 .

[92]  A. Arenas,et al.  Communication and optimal hierarchical networks , 2001, cond-mat/0103112.

[93]  Lada A. Adamic,et al.  Power-Law Distribution of the World Wide Web , 2000, Science.

[94]  Miguel A. F. Sanjuán,et al.  Congestion schemes and Nash equilibrium in complex networks , 2005 .

[95]  S. Brenner,et al.  The structure of the nervous system of the nematode Caenorhabditis elegans. , 1986, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[96]  S. Redner,et al.  Organization of growing random networks. , 2000, Physical review. E, Statistical, nonlinear, and soft matter physics.

[97]  Meng Zhan,et al.  Pattern formation of spiral waves in an inhomogeneous medium with small-world connections. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[98]  Xiao Fan Wang,et al.  Complex Networks: Topology, Dynamics and Synchronization , 2002, Int. J. Bifurc. Chaos.

[99]  Toru Ohira,et al.  PHASE TRANSITION IN A COMPUTER NETWORK TRAFFIC MODEL , 1998 .

[100]  S. N. Dorogovtsev,et al.  Evolution of networks , 2001, cond-mat/0106144.

[101]  B. Bollobás The evolution of random graphs , 1984 .

[102]  Albert-László Barabási,et al.  Hierarchical organization in complex networks. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[103]  A. Barabasi,et al.  Hierarchical Organization of Modularity in Metabolic Networks , 2002, Science.

[104]  Ashish Goel,et al.  Oblivious AQM and nash equilibria , 2002, CCRV.

[105]  M E J Newman Assortative mixing in networks. , 2002, Physical review letters.

[106]  Ramon Ferrer i Cancho,et al.  The small world of human language , 2001, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[107]  I Leyva,et al.  Sparse repulsive coupling enhances synchronization in complex networks. , 2006, Physical review. E, Statistical, nonlinear, and soft matter physics.

[108]  Sergei Maslov,et al.  Hierarchy measures in complex networks. , 2003, Physical review letters.

[109]  A. Kirman,et al.  Stochastic Communication and Coalition Formation , 1986 .

[110]  Srinivasan Seshan,et al.  Selfish behavior and stability of the internet:: a game-theoretic analysis of TCP , 2002, SIGCOMM '02.

[111]  Ott,et al.  Saddle-node bifurcations on fractal basin boundaries. , 1995, Physical review letters.

[112]  I. Kang Dynamics of a conducting drop in a time-periodic electric field , 1993, Journal of Fluid Mechanics.

[113]  Miguel A. F. Sanjuán,et al.  Complex networks and the WWW market , 2003 .

[114]  Miguel A. F. Sanjuán,et al.  Nonlinear dynamics of the Helmholtz Oscillator , 2004 .

[115]  Eitan Altman,et al.  Nash equilibria for combined flow control and routing in networks: asymptotic behavior for a large number of users , 2002, IEEE Trans. Autom. Control..

[116]  R. Guimerà,et al.  Functional cartography of complex metabolic networks , 2005, Nature.

[117]  Bard Ermentrout,et al.  Inhibition-Produced Patterning in Chains of Coupled Nonlinear Oscillators , 1994, SIAM J. Appl. Math..