Families of third and fourth algebraic order trigonometrically fitted symplectic methods for the numerical integration of Hamiltonian systems

The numerical integration of Hamiltonian systems by symplectic and trigonometrically fitted (TF) symplectic method is considered in this work. We construct new trigonometrically fitted symplectic methods of third and fourth order. We apply our new methods as well as other existing methods to the numerical integration of the harmonic oscillator, the 2D harmonic oscillator with an integer frequency ratio and an orbit problem studied by Stiefel and Bettis.

[1]  David Moore,et al.  On High Order MIRK Schemes and Hermite-Birkhoff Interpolants , 2006 .

[2]  Zacharoula Kalogiratou,et al.  Trigonometrically and Exponentially fitted Symplectic Methods of third order for the Numerical Integration of the Schrödinger Equation , 2005 .

[3]  Hans Van de Vyver A fourth-order symplectic exponentially fitted integrator , 2006, Comput. Phys. Commun..

[4]  M. Suzuki,et al.  General theory of fractal path integrals with applications to many‐body theories and statistical physics , 1991 .

[5]  Novriana Sumarti,et al.  The Derivation of Interpolants for Nonlinear Two-Point Boundary Value Problems , 2006 .

[6]  T. E. Simos,et al.  Exponentially fitted symplectic integrator. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[7]  T. E. Simos P-stable Four-Step Exponentially-Fitted Method for the Numerical Integration of the Schr¨odinger Equation , 2005 .

[8]  Mark E. Tuckerman,et al.  Explicit reversible integrators for extended systems dynamics , 1996 .

[9]  J. Cash,et al.  Variable Step Runge-Kutta-Nystrom Methods for the Numerical Solution of Reversible Systems , 2006 .

[10]  Jeff Cash,et al.  Lobatto-Obrechkoff Formulae for 2nd Order Two-Point Boundary Value Problems , 2006 .

[11]  R. McLachlan,et al.  The accuracy of symplectic integrators , 1992 .

[12]  D. G. Bettis,et al.  Stabilization of Cowell's method , 1969 .

[13]  J. M. Sanz-Serna,et al.  Numerical Hamiltonian Problems , 1994 .

[14]  E. Hairer,et al.  Geometric Numerical Integration , 2022, Oberwolfach Reports.

[15]  R. Ruth,et al.  Fourth-order symplectic integration , 1990 .

[16]  J. Butcher Numerical methods for ordinary differential equations , 2003 .

[17]  Alessandra Sestini,et al.  BS Linear Multistep Methods on Non-uniform Meshes , 2006 .

[18]  M. Tuckerman,et al.  Generalized Gaussian moment thermostatting: A new continuous dynamical approach to the canonical ensemble , 2000 .

[19]  G. Psihoyios A Block Implicit Advanced Step-point (BIAS) Algorithm for Stiff Differential Systems , 2006 .

[20]  R. Ruth A Can0nical Integrati0n Technique , 1983, IEEE Transactions on Nuclear Science.

[21]  H. Yoshida Construction of higher order symplectic integrators , 1990 .