Functional Inequalities and Hamilton–Jacobi Equations in Geodesic Spaces
暂无分享,去创建一个
Alexandre Engulatov | Zoltán M. Balogh | Alexandre Engulatov | Lars Hunziker | Outi Elina Maasalo | Z. Balogh | L. Hunziker
[1] S. Rachev. The Monge–Kantorovich Mass Transference Problem and Its Stochastic Applications , 1985 .
[2] N. Gozlan. A characterization of dimension free concentration in terms of transportation inequalities , 2008, 0804.3089.
[3] C. Villani. Optimal Transport: Old and New , 2008 .
[4] R. McCann. Polar factorization of maps on Riemannian manifolds , 2001 .
[5] S. Keith. Modulus and the Poincaré inequality on metric measure spaces , 2003 .
[6] Patrick Cattiaux,et al. On quadratic transportation cost inequalities , 2006 .
[7] S. Keith. A differentiable structure for metric measure spaces , 2004 .
[8] M. Gromov. Carnot-Carathéodory spaces seen from within , 1996 .
[9] C. Villani,et al. Ricci curvature for metric-measure spaces via optimal transport , 2004, math/0412127.
[10] S. Bobkov,et al. Exponential Integrability and Transportation Cost Related to Logarithmic Sobolev Inequalities , 1999 .
[11] Jeff Cheeger,et al. Differentiability of Lipschitz Functions on Metric Measure Spaces , 1999 .
[12] Karl-Theodor Sturm,et al. On the geometry of metric measure spaces , 2006 .
[13] G. M.,et al. Partial Differential Equations I , 2023, Applied Mathematical Sciences.
[14] Karl-Theodor Sturm,et al. On the geometry of metric measure spaces. II , 2006 .
[15] J. Inglis,et al. Logarithmic Sobolev Inequalities for Infinite Dimensional Hörmander Type Generators on the Heisenberg Group , 2009, 0901.1765.
[16] S. Bobkov,et al. From Brunn-Minkowski to Brascamp-Lieb and to logarithmic Sobolev inequalities , 2000 .
[17] J. Heinonen,et al. Quasiconformal maps in metric spaces with controlled geometry , 1998 .
[18] Katalin Marton,et al. A simple proof of the blowing-up lemma , 1986, IEEE Trans. Inf. Theory.
[19] Paul-Marie Samson,et al. A new characterization of Talagrand's transport-entropy inequalities and applications , 2011, 1104.1303.
[20] John Lott,et al. Hamilton–Jacobi semigroup on length spaces and applications , 2006 .
[21] N. Gozlan,et al. From concentration to logarithmic Sobolev and Poincaré inequalities , 2011 .
[22] R. McCann,et al. A Riemannian interpolation inequality à la Borell, Brascamp and Lieb , 2001 .
[23] C. Villani. The founding fathers of optimal transport , 2009 .
[24] M. Talagrand. Transportation cost for Gaussian and other product measures , 1996 .
[25] Ivan Gentil,et al. Équations de Hamilton-Jacobi et inégalités entropiques généralisées , 2002 .
[26] B. Zegarliński,et al. Entropy Bounds and Isoperimetry , 2005 .
[27] F. Barthe,et al. Mass Transport and Variants of the Logarithmic Sobolev Inequality , 2007, 0709.3890.
[28] Juan J. Manfredi,et al. A VERSION OF THE HOPF-LAX FORMULA IN THE HEISENBERG GROUP , 2002 .
[29] S. Bobkov,et al. Hypercontractivity of Hamilton-Jacobi equations , 2001 .
[30] F. Dragoni,et al. METRIC HOPF-LAX FORMULA WITH SEMICONTINUOUS DATA , 2007 .
[31] K. Marton. Bounding $\bar{d}$-distance by informational divergence: a method to prove measure concentration , 1996 .