Functional Inequalities and Hamilton–Jacobi Equations in Geodesic Spaces

We study the connection between the p-Talagrand inequality and the q-logarithmic Sololev inequality for conjugate exponents p ≥ 2, q ≤ 2 in proper geodesic metric spaces. By means of a general Hamilton–Jacobi semigroup we prove that these are equivalent, and moreover equivalent to the hypercontractivity of the Hamilton–Jacobi semigroup. Our results generalize those of Lott and Villani. They can be applied to deduce the p-Talagrand inequality in the sub-Riemannian setting of the Heisenberg group.

[1]  S. Rachev The Monge–Kantorovich Mass Transference Problem and Its Stochastic Applications , 1985 .

[2]  N. Gozlan A characterization of dimension free concentration in terms of transportation inequalities , 2008, 0804.3089.

[3]  C. Villani Optimal Transport: Old and New , 2008 .

[4]  R. McCann Polar factorization of maps on Riemannian manifolds , 2001 .

[5]  S. Keith Modulus and the Poincaré inequality on metric measure spaces , 2003 .

[6]  Patrick Cattiaux,et al.  On quadratic transportation cost inequalities , 2006 .

[7]  S. Keith A differentiable structure for metric measure spaces , 2004 .

[8]  M. Gromov Carnot-Carathéodory spaces seen from within , 1996 .

[9]  C. Villani,et al.  Ricci curvature for metric-measure spaces via optimal transport , 2004, math/0412127.

[10]  S. Bobkov,et al.  Exponential Integrability and Transportation Cost Related to Logarithmic Sobolev Inequalities , 1999 .

[11]  Jeff Cheeger,et al.  Differentiability of Lipschitz Functions on Metric Measure Spaces , 1999 .

[12]  Karl-Theodor Sturm,et al.  On the geometry of metric measure spaces , 2006 .

[13]  G. M.,et al.  Partial Differential Equations I , 2023, Applied Mathematical Sciences.

[14]  Karl-Theodor Sturm,et al.  On the geometry of metric measure spaces. II , 2006 .

[15]  J. Inglis,et al.  Logarithmic Sobolev Inequalities for Infinite Dimensional Hörmander Type Generators on the Heisenberg Group , 2009, 0901.1765.

[16]  S. Bobkov,et al.  From Brunn-Minkowski to Brascamp-Lieb and to logarithmic Sobolev inequalities , 2000 .

[17]  J. Heinonen,et al.  Quasiconformal maps in metric spaces with controlled geometry , 1998 .

[18]  Katalin Marton,et al.  A simple proof of the blowing-up lemma , 1986, IEEE Trans. Inf. Theory.

[19]  Paul-Marie Samson,et al.  A new characterization of Talagrand's transport-entropy inequalities and applications , 2011, 1104.1303.

[20]  John Lott,et al.  Hamilton–Jacobi semigroup on length spaces and applications , 2006 .

[21]  N. Gozlan,et al.  From concentration to logarithmic Sobolev and Poincaré inequalities , 2011 .

[22]  R. McCann,et al.  A Riemannian interpolation inequality à la Borell, Brascamp and Lieb , 2001 .

[23]  C. Villani The founding fathers of optimal transport , 2009 .

[24]  M. Talagrand Transportation cost for Gaussian and other product measures , 1996 .

[25]  Ivan Gentil,et al.  Équations de Hamilton-Jacobi et inégalités entropiques généralisées , 2002 .

[26]  B. Zegarliński,et al.  Entropy Bounds and Isoperimetry , 2005 .

[27]  F. Barthe,et al.  Mass Transport and Variants of the Logarithmic Sobolev Inequality , 2007, 0709.3890.

[28]  Juan J. Manfredi,et al.  A VERSION OF THE HOPF-LAX FORMULA IN THE HEISENBERG GROUP , 2002 .

[29]  S. Bobkov,et al.  Hypercontractivity of Hamilton-Jacobi equations , 2001 .

[30]  F. Dragoni,et al.  METRIC HOPF-LAX FORMULA WITH SEMICONTINUOUS DATA , 2007 .

[31]  K. Marton Bounding $\bar{d}$-distance by informational divergence: a method to prove measure concentration , 1996 .