On the Existence of HeHe Bond in the Endohedral Fullerene Hе2@C60

Twenty years have already been passed since the endohedral fullerene's void ceaselessly attracts attention of both, experimentalists and theoreticians, computational chemists and physicists in particular, who direct their efforts on computer simulations of encapsulating atoms and molecules into fullerene void and on unraveling the arising bonding patterns. We review recent developments on the endohedral He2@C60 fullerene, on its experimental observation and on related computational works. The two latter are the main concerns in the present work: on the one hand, there experimentally exists the He dimer embedded into C60 void. On the other, computational side, each He atom exhibits a negligible charge transfer to C60 resulting in that altogether, the He dimer exists as a fractionally charged (He+δ)2. Whether there exists a bond between these two helium atoms is the key question of the present work. Since a bond is a two‐body creature, we assert that it suffices to define the bond on the basis of Löwdin's postulate of a molecule which we invoke to investigate such formation of the He dimer in a given C60 void in terms of the HeHe potential energy well. It is analytically demonstrated that this well enables to maintain at least one bound (ground) state, and therefore, according to Löwdin's postulate which is naturally anticipated within quantum theory, we infer that (He+δ)2 is a molecule, a diatomic, where two heliums are bonded to each other. Using these arguments, we also propose to extend the concept of stability of endohedral fullerenes. © 2017 Wiley Periodicals, Inc.

[1]  H. Dodziuk,et al.  Modeling complexes of H2 molecules in fullerenes , 2005 .

[2]  H. Jiménez-Vázquez,et al.  RELEASE OF NOBLE GAS ATOMS FROM INSIDE FULLERENES , 1996 .

[3]  Martin Saunders,et al.  An artificial molecule of Ne2 inside C70 , 1998 .

[4]  Y. Rubin,et al.  Triple Scission of a Six-Membered Ring on the Surface of C60 via Consecutive Pericyclic Reactions and Oxidative Cobalt Insertion , 1996 .

[5]  G. Scuseria,et al.  Theoretical Evidence for a C60 "Window" Mechanism , 1994, Science.

[6]  Walter Thiel,et al.  How Does Helium Get into Buckminsterfullerene , 1996 .

[7]  Donald G Truhlar,et al.  Density functionals with broad applicability in chemistry. , 2008, Accounts of chemical research.

[8]  H. Kroto,et al.  Symmetry, space, stars and C 60 * , 1997 .

[9]  J. C. Slater The Normal State of Helium , 1928 .

[10]  J. Reimers,et al.  The Mechanism of Covalent Bonding , 1997 .

[11]  Anton Zeilinger,et al.  Wave–particle duality of C60 molecules , 1999, Nature.

[12]  F. Wudl The chemical properties of buckminsterfullerene (C60) and the birth and infancy of fulleroids , 1992 .

[13]  Martin Saunders,et al.  AN NMR STUDY OF HE2 INSIDE C70 , 1998 .

[14]  Harold W. Kroto,et al.  A postbuckminsterfullerene view of carbon in the galaxy , 1992 .

[15]  W. Curtis A New Band Spectrum Associated with Helium , 1913 .

[16]  Gernot Frenking,et al.  Is this a chemical bond? A theoretical study of Ng2@C60 (Ng=He, Ne, Ar, Kr, Xe). , 2007, Chemistry.

[17]  Walter Thiel,et al.  Ab initio helium NMR chemical shifts of endohedral fullerene compounds He@Cn (n = 32−180) , 1995 .

[18]  J. Weaver Fullerenes and fullerides: photoemission and scanning tunneling microscopy studies , 1992 .

[19]  Johanna L. Miller Efimov trimers imaged for the first time , 2015 .

[20]  A. Schäfer,et al.  Fully optimized contracted Gaussian basis sets of triple zeta valence quality for atoms Li to Kr , 1994 .

[21]  E. S. Meyer,et al.  Comment on ‘‘The weakest bond: Experimental observation of helium dimer’’ [J. Chem. Phys. 98, 3564 (1993)] , 1994 .

[22]  M. Plesset,et al.  Note on an Approximation Treatment for Many-Electron Systems , 1934 .

[23]  J. Maier,et al.  Perspective: C60+ and laboratory spectroscopy related to diffuse interstellar bands. , 2017, The Journal of chemical physics.

[24]  P. Löwdin On nuclear motion and the definition of molecular structure , 1991 .

[25]  J. Eloranta,et al.  Interaction of Helium Rydberg State Molecules with Dense Helium. , 2016, The journal of physical chemistry. A.

[26]  A. J. Muller,et al.  Conducting films of C60 and C70 by alkali-metal doping , 1991, Nature.

[27]  G. Leroy Stability of chemical species , 1983 .

[28]  R. S. Mulliken Electronic Population Analysis on LCAO–MO Molecular Wave Functions. I , 1955 .

[29]  D. A. García-Hernández,et al.  FORMATION OF FULLERENES IN H-CONTAINING PLANETARY NEBULAE , 2010, 1009.4357.

[30]  Boris M. Smirnov,et al.  Fullerenes and carbon structures , 1995 .

[31]  J. Cioslowski Endohedral chemistry: electronic structures of molecules trapped inside the C60 cage , 1991 .

[32]  Martin Saunders,et al.  Two helium atoms inside fullerenes: probing the internal magnetic field in C60(6-) and C70(6-). , 2002, Journal of the American Chemical Society.

[33]  Yang Liu,et al.  He@Mo(6)Cl(8)F(6): a stable complex of helium. , 2010, Journal of Physical Chemistry A.

[34]  P. Fagan,et al.  Metal complexes of buckminsterfullerene (C60) , 1992 .

[35]  Frank Neese,et al.  The ORCA program system , 2012 .

[36]  J L Bada,et al.  Extraterrestrial Helium Trapped in Fullerenes in the Sudbury Impact Structure , 1996, Science.

[37]  E. Kryachko,et al.  Formation of dimers of light noble atoms under encapsulation within fullerene’s voids , 2015, Nanoscale Research Letters.

[38]  P. Scheier,et al.  Atomically resolved phase transition of fullerene cations solvated in helium droplets , 2016, Nature Communications.

[39]  J. Linnett,et al.  Quantum mechanics , 1975, Nature.

[40]  Roger Taylor,et al.  The chemistry of fullerenes , 1995, Nature.

[41]  M. Nauenberg Readers offer their own magic moments with John Bell , 2015 .

[42]  Mark R. Johnson,et al.  Confirming a predicted selection rule in inelastic neutron scattering spectroscopy: the quantum translator-rotator H2 entrapped inside C60. , 2014, Physical Review Letters.

[43]  How many hydrogen molecules can be inserted into C60? Comments on the paper ‘AM1 treatment of endohedrally hydrogen doped fullerene, nH2@C60’ by L. Türker and Ş. Erkoç [J. Mol. Struct. (Theochem) 638 (2003) 37–40]☆ , 2005 .

[44]  Chunru Wang,et al.  Preparation of He@C60 and He2@C60 by an explosive method , 2009 .

[45]  G. C. McBane,et al.  Response to "Comment on 'The Weakest Bond: Experimental Observation of Helium Dimer'" , 1994 .

[46]  Ralf Tonner,et al.  Packed to the rafters: filling up C60 with rare gas atoms. , 2011, Chemphyschem : a European journal of chemical physics and physical chemistry.

[47]  Eugene D. Fleischmann,et al.  Endohedral complexes: Atoms and ions inside the C60 cage , 1991 .

[48]  Helmut Schwarz,et al.  High-energy collisions of Kr@C60+. with helium. Evidence for the formation of HeKr@C60+. , 1994 .

[49]  D. Bethune,et al.  Fullerene Structure and Dynamics: A Magnetic Resonance Potpourri , 1992 .

[50]  R. Smalley,et al.  Self-assembly of the fullerenes , 1992 .

[51]  A. Rae Quantum physics: Waves, particles and fullerenes , 1999, Nature.

[52]  C. Girardet,et al.  Structure of the Van der Waals rare gas–C60 exohedral complexes [(C60)(RG)n; n=1, 2] , 1998 .

[53]  L. Curtiss,et al.  Intermolecular interactions from a natural bond orbital, donor-acceptor viewpoint , 1988 .

[54]  Frank Weinhold,et al.  Natural bond orbital methods , 2012 .

[55]  Robert L. Whetten,et al.  Beyond C60: the higher fullerenes , 1992 .

[56]  Martin Schütz,et al.  Molpro: a general‐purpose quantum chemistry program package , 2012 .

[57]  Robert C. Haddon,et al.  Electronic structure, conductivity and superconductivity of alkali metal doped (C60) , 1992 .

[58]  J. Toennies Helium clusters and droplets: microscopic superfluidity and other quantum effects† , 2013 .

[59]  Stefan Grimme,et al.  Inclusion complexes of buckycatcher with C(60) and C(70). , 2010, Physical chemistry chemical physics : PCCP.

[60]  Pratim K. Chattaraj,et al.  Movement of Ng2 molecules confined in a C60 cage: An ab initio molecular dynamics study , 2014 .

[61]  W. Schwarz,et al.  Antibond breaking--the formation and decomposition of He@adamantane: descriptions, explanations, and meaning of concepts. , 2010, Chemistry.

[62]  V. Seifert Essays in the Philosophy of Chemistry , 2016 .

[63]  M. Prato,et al.  There Is a Hole in My Bucky , 1995 .

[64]  M. Corr Superelectrophiles and their chemistry , 2010 .

[65]  N. Sathyamurthy,et al.  Host-guest interaction in endohedral fullerenes , 2008 .

[66]  Clark R. Landis,et al.  Valency and Bonding: Author index , 2005 .

[67]  H. Dodziuk,et al.  Molecular mechanics study of endohedral fullerene complexes with small molecules , 2001 .

[68]  Gustavo E. Scuseria,et al.  Role of sp 3 carbon and 7-membered rings in fullerene annealing and fragmentation , 1993, Nature.

[69]  J. Hawkins Osmylation of C60: proof and characterization of the soccer-ball framework , 1992 .

[70]  Gustavo E. Scuseria,et al.  Noble Gas Endohedral Complexes of C60 Buckminsterfullerene , 1997 .

[71]  H. Cooper,et al.  Direct detection and quantitation of He@C60 by ultrahigh-resolution Fourier transform ion cyclotron resonance mass spectrometry , 2002, Journal of the American Society for Mass Spectrometry.

[72]  K. Szalewicz,et al.  Pair Potential with Submillikelvin Uncertainties and Nonadiabatic Treatment of the Halo State of the Helium Dimer. , 2017, Physical review letters.

[73]  N. Sathyamurthy,et al.  Possibility of proton motion through buckminsterfullerene , 1999 .

[74]  Walter Thiel,et al.  Interaction energies and NMR chemical shifts of noble gases in C60 , 1997 .

[75]  J. M. Gomez Llorente,et al.  On polarization effects in endohedral fullerene complexes , 1995 .

[76]  Martin Saunders,et al.  129Xe NMR spectrum of xenon inside C(60). , 2002, Journal of the American Chemical Society.

[77]  Electrostatic potential, polarization, shielding, and charge transfer in endohedral complexes of the C60, C70, C76, C78, C82, and C84 clusters , 1993 .

[78]  B. Sutcliffe Some observations on P-O Löwdin's definition of a molecule , 2002 .

[79]  S. C. O'brien,et al.  C60: Buckminsterfullerene , 1985, Nature.

[80]  O. Sejersted Nobel Prize for Chemistry , 1937, Nature.

[81]  Wanrun Jiang,et al.  Unusual spin-polarized electron state in fullerene induced by carbon adatom defect. , 2017, Nanoscale.

[82]  Helmut Schwarz,et al.  Endohedral Cluster Compounds: Inclusion of Helium within C 60•⊕ and C 70•⊕ through Collision Experiments , 1991 .

[83]  Hans W. Horn,et al.  Fully optimized contracted Gaussian basis sets for atoms Li to Kr , 1992 .

[84]  Holger Kruse,et al.  Accurate Quantum Chemical Description of Non-Covalent Interactions in Hydrogen Filled Endohedral Fullerene Complexes , 2009 .

[85]  Sílvia Osuna,et al.  The Chemical Reactivity of Fullerenes and Endohedral Fullerenes: A Theoretical Perspective , 2011 .

[86]  L. Foucar,et al.  Single photon double ionization of the helium dimer. , 2010, Physical review letters.

[87]  R. Ruoff,et al.  Stability of M@C60 endohedral complexes , 1993 .

[88]  P. Löwdin The Mathematical Definition of a Molecule and Molecular Structure , 1988 .

[89]  Leonid A. Bulavin,et al.  JANPA: An open source cross-platform implementation of the Natural Population Analysis on the Java platform , 2014 .

[90]  Ante Graovac,et al.  The Mathematics and Topology of Fullerenes , 2011 .

[91]  Wojciech Cencek,et al.  Ultra‐high accuracy calculations for hydrogen molecule and helium dimer , 2008 .

[92]  C. Sloby,et al.  Discovering the fullerenes , 1997 .

[93]  W. Schwarz,et al.  Bonding or nonbonding? Description or explanation? "Confinement bonding" of He@adamantane. , 2009, Chemistry.

[94]  Martin Saunders,et al.  Incorporation of helium, neon, argon, krypton, and xenon into fullerenes using high pressure , 1994 .

[95]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[96]  J. Toennies,et al.  Nondestructive Mass Selection of Small van der Waals Clusters , 1994, Science.

[97]  Marcel Swart,et al.  Reactivity and regioselectivity of noble gas endohedral fullerenes Ng@C(60) and Ng(2)@C(60) (Ng=He-Xe). , 2009, Chemistry.

[98]  Clark R. Landis,et al.  Valency and Bonding: Contents , 2005 .

[99]  D. Bethune,et al.  Bond Lengths in Free Molecules of Buckminsterfullerene, C60, from Gas-Phase Electron Diffraction , 1991, Science.

[100]  H. Dodziuk Endohedral Fullerene Complexes and In-Out Isomerism in Perhydrogenated Fullerenes , 2011 .

[101]  F. Weinhold,et al.  Natural population analysis , 1985 .

[102]  Clark R. Landis,et al.  Valency and Bonding: A Natural Bond Orbital Donor-Acceptor Perspective , 2005 .

[103]  Neil Bartlett,et al.  Concerning the nature of XePtF6 , 2000 .

[104]  Robert J. Gdanitz Accurately solving the electronic Schrödinger equation of atoms and molecules using explicitly correlated (r12-)MR-CI. VI. The helium dimer (He2) revisited , 2001 .

[105]  E. Kryachko,et al.  He2@C60: Thoughts of the concept of a molecule and of the concept of a bond in quantum chemistry , 2015 .

[106]  Harold W. Kroto C60: BUCKMINSTERFULLERENE, THE CELESTIAL SPHERE THAT FELL TO EARTH , 1992 .

[107]  E. Kaxiras,et al.  Bonding of endohedral atoms in small carbon fullerenes , 1994 .

[108]  D. Truhlar,et al.  The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06-class functionals and 12 other functionals , 2008 .

[109]  Donald G Truhlar,et al.  Comparative DFT study of van der Waals complexes: rare-gas dimers, alkaline-earth dimers, zinc dimer, and zinc-rare-gas dimers. , 2006, The journal of physical chemistry. A.

[110]  Jerzy Cioslowski,et al.  Electronic Structure Calculations on Fullerenes and Their Derivatives , 1995 .

[111]  Stefan Grimme,et al.  Noncovalent Interactions between Graphene Sheets and in Multishell (Hyper)Fullerenes , 2007 .

[112]  Kelling J. Donald,et al.  Influence of endohedral confinement on the electronic interaction between He atoms: a He2@C20H20 case study. , 2009, Chemistry.

[113]  E. Kryachko Stability and protonation of multielectron systems: The concept of proton affinity. I. Vague limits† , 2011 .

[114]  M. Saunders,et al.  Helium entry and escape through a chemically opened window in a fullerene. , 2005, Journal of the American Chemical Society.

[115]  E. Kryachko The Force Field Picture of Molecular Shape Response , 2008 .

[116]  J. Ogilvie The nature of the chemical bond—1990: There are no such things as orbitals! , 1990 .

[117]  J. Murrell,et al.  A search for bound levels of the van der waals molecules: H2(a3Σu+), HeH(X2Σ+), LiH(a3Σ+) and LiHe(X2Σ+) , 2002 .

[118]  Martin Saunders,et al.  Stable Compounds of Helium and Neon: He@C60 and Ne@C60 , 1993, Science.

[119]  Darrin M. York,et al.  High-level ab initio methods for calculation of potential energy surfaces of van der Waals complexes , 2004 .

[120]  Linus Pauling,et al.  The Normal State of the Helium Molecule-Ions He 2 + and He 2 ++ , 1933 .