Where is My Spot? Few-shot Image Generation via Latent Subspace Optimization

Chenxi Zheng 1† Bangzhen Liu 1† Huaidong Zhang 1‡ Xuemiao Xu1,2,3,4‡ Shengfeng He 5 South China University of Technology State Key Laboratory of Subtropical Building Science Ministry of Education Key Laboratory of Big Data and Intelligent Robot Guangdong Provincial Key Lab of Computational Intelligence and Cyberspace Information Singapore Management University {cszcx, cs liubz}@mail.scut.edu.cn, {huaidongz, xuemx}@scut.edu.cn, shengfenghe@smu.edu.sg

[1]  Dahua Lin,et al.  Parsing-Conditioned Anime Translation: A New Dataset and Method , 2023, ACM Trans. Graph..

[2]  Junyu Dong,et al.  Editing Out-of-domain GAN Inversion via Differential Activations , 2022, ECCV.

[3]  Ziqiu Chi,et al.  WaveGAN: Frequency-aware GAN for High-Fidelity Few-shot Image Generation , 2022, ECCV.

[4]  Henghui Ding,et al.  A Closer Look at Few-shot Image Generation , 2022, 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[5]  Xin Jin,et al.  Attribute Group Editing for Reliable Few-shot Image Generation , 2022, 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[6]  Shalini De Mello,et al.  Efficient Geometry-aware 3D Generative Adversarial Networks , 2021, 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[7]  N. Kwak,et al.  Few-Shot Image Generation with Mixup-Based Distance Learning , 2021, ECCV.

[8]  Yang Gao,et al.  LoFGAN: Fusing Local Representations for Few-shot Image Generation , 2021, 2021 IEEE/CVF International Conference on Computer Vision (ICCV).

[9]  Jaakko Lehtinen,et al.  Alias-Free Generative Adversarial Networks , 2021, NeurIPS.

[10]  Daniel Cohen-Or,et al.  Pivotal Tuning for Latent-based Editing of Real Images , 2021, ACM Trans. Graph..

[11]  Qiang Wen,et al.  Discovering Interpretable Latent Space Directions of GANs Beyond Binary Attributes , 2021, 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[12]  Avinatan Hassidim,et al.  Explaining in Style: Training a GAN to explain a classifier in StyleSpace , 2021, 2021 IEEE/CVF International Conference on Computer Vision (ICCV).

[13]  Daniel Cohen-Or,et al.  Designing an encoder for StyleGAN image manipulation , 2021, ACM Trans. Graph..

[14]  B. Ommer,et al.  Taming Transformers for High-Resolution Image Synthesis , 2020, 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[15]  Peter Wonka,et al.  Improved StyleGAN Embedding: Where are the Good Latents? , 2020, ArXiv.

[16]  Dani Lischinski,et al.  StyleSpace Analysis: Disentangled Controls for StyleGAN Image Generation , 2020, 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[17]  Liqing Zhang,et al.  DeltaGAN: Towards Diverse Few-shot Image Generation with Sample-Specific Delta , 2020, ECCV.

[18]  Yan Hong,et al.  F2GAN: Fusing-and-Filling GAN for Few-shot Image Generation , 2020, ACM Multimedia.

[19]  Kate Saenko,et al.  COCO-FUNIT: Few-Shot Unsupervised Image Translation with a Content Conditioned Style Encoder , 2020, ECCV.

[20]  Pieter Abbeel,et al.  Denoising Diffusion Probabilistic Models , 2020, NeurIPS.

[21]  Tero Karras,et al.  Training Generative Adversarial Networks with Limited Data , 2020, NeurIPS.

[22]  Kaiming He,et al.  Improved Baselines with Momentum Contrastive Learning , 2020, ArXiv.

[23]  Yan Hong,et al.  Matchinggan: Matching-Based Few-Shot Image Generation , 2020, 2020 IEEE International Conference on Multimedia and Expo (ICME).

[24]  L. Carin,et al.  On Leveraging Pretrained GANs for Generation with Limited Data , 2020, ICML.

[25]  Jinwoo Shin,et al.  Freeze the Discriminator: a Simple Baseline for Fine-Tuning GANs , 2020, 2002.10964.

[26]  Zixuan Liu,et al.  DAWSON: A Domain Adaptive Few Shot Generation Framework , 2020, ArXiv.

[27]  Joost van de Weijer,et al.  MineGAN: Effective Knowledge Transfer From GANs to Target Domains With Few Images , 2019, 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[28]  Tero Karras,et al.  Analyzing and Improving the Image Quality of StyleGAN , 2019, 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[29]  Ross B. Girshick,et al.  Momentum Contrast for Unsupervised Visual Representation Learning , 2019, 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[30]  Lingyun Wu,et al.  MaskGAN: Towards Diverse and Interactive Facial Image Manipulation , 2019, 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[31]  Jaakko Lehtinen,et al.  Few-Shot Unsupervised Image-to-Image Translation , 2019, 2019 IEEE/CVF International Conference on Computer Vision (ICCV).

[32]  Tatsuya Harada,et al.  Image Generation From Small Datasets via Batch Statistics Adaptation , 2019, 2019 IEEE/CVF International Conference on Computer Vision (ICCV).

[33]  Louis Clouâtre,et al.  FIGR: Few-shot Image Generation with Reptile , 2019, ArXiv.

[34]  Timo Aila,et al.  A Style-Based Generator Architecture for Generative Adversarial Networks , 2018, 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[35]  Jeff Donahue,et al.  Large Scale GAN Training for High Fidelity Natural Image Synthesis , 2018, ICLR.

[36]  Shun-Po Chuang,et al.  Towards Audio to Scene Image Synthesis Using Generative Adversarial Network , 2018, ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).

[37]  Dmitry P. Vetrov,et al.  Few-shot Generative Modelling with Generative Matching Networks , 2018, AISTATS.

[38]  J. Schulman,et al.  Reptile: a Scalable Metalearning Algorithm , 2018 .

[39]  Takeru Miyato,et al.  cGANs with Projection Discriminator , 2018, ICLR.

[40]  Alexei A. Efros,et al.  The Unreasonable Effectiveness of Deep Features as a Perceptual Metric , 2018, 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.

[41]  Amos J. Storkey,et al.  Data Augmentation Generative Adversarial Networks , 2017, ICLR 2018.

[42]  Omkar M. Parkhi,et al.  VGGFace2: A Dataset for Recognising Faces across Pose and Age , 2017, 2018 13th IEEE International Conference on Automatic Face & Gesture Recognition (FG 2018).

[43]  Sergey Levine,et al.  Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks , 2017, ICML.

[44]  Harri Valpola,et al.  Weight-averaged consistency targets improve semi-supervised deep learning results , 2017, ArXiv.

[45]  Dimitris N. Metaxas,et al.  StackGAN: Text to Photo-Realistic Image Synthesis with Stacked Generative Adversarial Networks , 2016, 2017 IEEE International Conference on Computer Vision (ICCV).

[46]  Alexei A. Efros,et al.  Image-to-Image Translation with Conditional Adversarial Networks , 2016, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[47]  Jonathon Shlens,et al.  Conditional Image Synthesis with Auxiliary Classifier GANs , 2016, ICML.

[48]  Bernt Schiele,et al.  Generative Adversarial Text to Image Synthesis , 2016, ICML.

[49]  Jian Sun,et al.  Deep Residual Learning for Image Recognition , 2015, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[50]  Jimmy Ba,et al.  Adam: A Method for Stochastic Optimization , 2014, ICLR.

[51]  Simon Osindero,et al.  Conditional Generative Adversarial Nets , 2014, ArXiv.

[52]  Andrew Zisserman,et al.  Automated Flower Classification over a Large Number of Classes , 2008, 2008 Sixth Indian Conference on Computer Vision, Graphics & Image Processing.

[53]  Geoffrey E. Hinton,et al.  Visualizing Data using t-SNE , 2008 .