A general solution of the weighted orthonormal procrustes problem
暂无分享,去创建一个
[1] Elliot M. Cramer,et al. On browne's solution for oblique procrustes rotation , 1974 .
[2] Ingwer Borg,et al. Anwendungsorientierte multidimensionale Skalierung , 1981 .
[3] P. Schönemann,et al. A solution to the weighted procrustes problem in which the transformation is in agreement with the loss function , 1976 .
[4] Michael W. Browne,et al. On oblique procrustes rotation , 1967 .
[5] Ingwer Borg,et al. A direct approach to individual differences scaling using increasingly complex transformations , 1978 .
[6] G. Forsythe,et al. On the Stationary Values of a Second-Degree Polynomial on the Unit Sphere , 1965 .
[7] Dirk L. Knol,et al. Orthogonal rotations to maximal agreement for two or more matrices of different column orders , 1984 .
[8] J. Berge,et al. Orthogonal procrustes rotation for two or more matrices , 1977 .
[9] J. Berge,et al. A general solution to Mosier's oblique procrustes problem , 1977 .
[10] J. Gower. Multivariate analysis : Ordination, multidimensional scaling and allied topics , 1984 .
[11] C. I. Mosier,et al. Determining a simple structure when loadings for certain tests are known , 1939 .
[12] P. Schönemann,et al. A generalized solution of the orthogonal procrustes problem , 1966 .
[13] Edmund R. Peay,et al. Multidimensional rotation and scaling of configurations to optimal agreement , 1988 .