Mechanical properties of zeolitic metal-organic frameworks

We report on the elastic moduli of two large pore zeolitic metal–organic frameworks (rho- and sod-ZMOF). Their extremely low (1.93 GPa), and intermediate (5.57 GPa) moduli are compared with those of zeolites of identical topologies, finding similarities relative to frameworks in the same family. Whilst collapse upon ball-milling occurs quickly, common solvents can be used to stabilise the structure, a facile method which may be applicable to other porous hybrid frameworks.

[1]  I. Collings,et al.  Geometric switching of linear to area negative thermal expansion in uniaxial metal–organic frameworks , 2014 .

[2]  V. Falk,et al.  Towards industrial use of metal-organic framework: Impact of shaping on the MOF properties , 2014 .

[3]  Richard L. Martin,et al.  On the flexibility of metal-organic frameworks. , 2014, Journal of the American Chemical Society.

[4]  François-Xavier Coudert,et al.  Systematic investigation of the mechanical properties of pure silica zeolites: stiffness, anisotropy, and negative linear compressibility. , 2013, Physical chemistry chemical physics : PCCP.

[5]  T. Do,et al.  Mineral neogenesis as an inspiration for mild, solvent-free synthesis of bulk microporous metal–organic frameworks from metal (Zn, Co) oxides , 2013 .

[6]  François-Xavier Coudert,et al.  Metal-organic frameworks with wine-rack motif: what determines their flexibility and elastic properties? , 2013, The Journal of chemical physics.

[7]  A. Cheetham,et al.  Thermochemistry of zeolitic imidazolate frameworks of varying porosity. , 2013, Journal of the American Chemical Society.

[8]  Christian Serre,et al.  A series of isoreticular, highly stable, porous zirconium oxide based metal-organic frameworks. , 2012, Angewandte Chemie.

[9]  Andrew L. Goodwin,et al.  Supramolecular mechanics in a metal–organic framework , 2012 .

[10]  M. Cliffe,et al.  Accelerated aging: a low energy, solvent-free alternative to solvothermal and mechanochemical synthesis of metal–organic materials , 2012 .

[11]  Bartolomeo Civalleri,et al.  Exceptionally low shear modulus in a prototypical imidazole-based metal-organic framework. , 2012, Physical review letters.

[12]  C. Morrison,et al.  The effect of high pressure on MOF-5: guest-induced modification of pore size and content at high pressure. , 2011, Angewandte Chemie.

[13]  Juan Herranz,et al.  Iron-based cathode catalyst with enhanced power density in polymer electrolyte membrane fuel cells. , 2011, Nature communications.

[14]  J. Harmon,et al.  Symbiosis of zeolite-like metal–organic frameworks (rho-ZMOF) and hydrogels: Composites for controlled drug release , 2011 .

[15]  Anthony K. Cheetham,et al.  Mechanical properties of hybrid inorganic-organic framework materials: establishing fundamental structure-property relationships. , 2011, Chemical Society reviews.

[16]  A. Cheetham,et al.  Mechanical properties of dense zeolitic imidazolate frameworks (ZIFs): a high-pressure X-ray diffraction, nanoindentation and computational study of the zinc framework Zn(Im)2, and its lithium-boron analogue, LiB(Im)4. , 2010, Chemistry.

[17]  J. Haines,et al.  Deactivation of pressure-induced amorphization in silicalite SiO2 by insertion of guest species. , 2010, Journal of the American Chemical Society.

[18]  A. Cheetham,et al.  Chemical structure, network topology, and porosity effects on the mechanical properties of Zeolitic Imidazolate Frameworks , 2010, Proceedings of the National Academy of Sciences.

[19]  Lei Zhang,et al.  Amorphization of metal-organic framework MOF-5 at unusually low applied pressure , 2010 .

[20]  J. Eckert,et al.  Zeolite-like metal-organic frameworks (ZMOFs) as hydrogen storage platform: lithium and magnesium ion-exchange and H(2)-(rho-ZMOF) interaction studies. , 2009, Journal of the American Chemical Society.

[21]  Michael O'Keeffe,et al.  High-Throughput Synthesis of Zeolitic Imidazolate Frameworks and Application to CO2 Capture , 2008, Science.

[22]  Michael O’Keeffe,et al.  Exceptional chemical and thermal stability of zeolitic imidazolate frameworks , 2006, Proceedings of the National Academy of Sciences.

[23]  J. Hriljac High-pressure synchrotron X-ray powder diffraction studies of zeolites , 2006 .

[24]  Mohamed Eddaoudi,et al.  Molecular building blocks approach to the assembly of zeolite-like metal-organic frameworks (ZMOFs) with extra-large cavities. , 2006, Chemical communications.

[25]  Kenneth E. Evans,et al.  Brillouin scattering study on the single-crystal elastic properties of natrolite and analcime zeolites , 2005 .

[26]  Susumu Kitagawa,et al.  Functional porous coordination polymers. , 2004, Angewandte Chemie.

[27]  I. Šmit,et al.  Mechanochemistry of zeolites: Part 1. Amorphization of zeolites A and X and synthetic mordenite by ball milling , 1993 .

[28]  R. Hazen,et al.  Zeolite Molecular Sieve 4A: Anomalous Compressibility and Volume Discontinuities at High Pressure , 1983, Science.

[29]  Bartolomeo Civalleri,et al.  Quantum mechanical predictions to elucidate the anisotropic elastic properties of zeolitic imidazolate frameworks: ZIF-4 vs. ZIF-zni , 2015 .

[30]  Tomislav Friščić,et al.  Real-time and in situ monitoring of mechanochemical milling reactions. , 2013, Nature chemistry.

[31]  I. Šmit,et al.  Mechanochemistry of zeolites: Part 3. Amorphization of zeolite ZSM-5 by ball milling , 1995 .