Possible evolution of the circum-galactic medium around QSOs with QSO age and cosmic time revealed by Ly α haloes

We first present new Subaru narrow-band observations of the Ly α halo around the quasi-stellar object (QSO) CFHQ J232908−030158 at z = 6.42, which appears the most luminous and extended halo at z > 5 (LLy α = 9.8 × 1043 erg s−1 within 37 pkpc diameter). Then, combining these measurements with available data in the literature, we find two different evolutions of QSOs’ Ly α haloes. First is a possible short-term evolution with QSO age seen in four z > 6 QSOs. We find the anticorrelation between the Ly α halo scales with QSOs’ infrared (IR) luminosity, with J2329−0301’s halo being the brightest and largest. It indicates that ionizing photons escape more easily out to circum-galactic regions when host galaxies are less dusty. We also find a positive correlation between IR luminosity and black hole mass (MBH). Given MBH as an indicator of QSO age, we propose a hypothesis that a large Ly α halo mainly exists around QSOs in the young phase of their activity due to a small amount of dust. The second is an evolution with cosmic time seen over z ∼ 2–5. We find the increase of surface brightness towards lower redshift with a similar growth rate to that of dark matter haloes (DHs) that evolve to MDH = 1012–1013 M⊙ at z = 2. The extent of Ly α haloes is also found to increase at a rate scaling with the virial radius of growing DHs, $r_\text{vir} \propto M_\text{DH}^{1/3}(1+z)^{-1}$. These increases are consistent with a scenario that the circum-galactic medium around QSOs evolves in mass and size keeping pace with hosting DHs.

[1]  Elisabeta Lusso,et al.  QSO MUSEUM I: a sample of 61 extended Ly α-emission nebulae surroundingz∼ 3 quasars , 2018, Monthly Notices of the Royal Astronomical Society.

[2]  Ran Wang,et al.  Keck/Palomar Cosmic Web Imagers Reveal an Enormous Lyα Nebula in an Extremely Overdense Quasi-stellar Object Pair Field at z = 2.45 , 2018, The Astrophysical Journal.

[3]  R. Maiolino,et al.  Extended and broad Ly α emission around a BAL quasar at z ∼ 5 , 2018, 1802.03400.

[4]  H. Rix,et al.  An ALMA [C ii] Survey of 27 Quasars at z > 5.94 , 2018, The Astrophysical Journal.

[5]  K. Sugimura,et al.  Modelling of Lyman-alpha emitting galaxies and ionized bubbles at the epoch of reionization , 2017, 1701.05571.

[6]  J. Brinchmann,et al.  The MUSE Hubble Ultra Deep Field Survey - VIII. Extended Lyman-α haloes around high-z star-forming galaxies , 2017, 1710.10271.

[7]  A. Omont,et al.  A Wide Dispersion in Star Formation Rate and Dynamical Mass of 108 Solar Mass Black Hole Host Galaxies at Redshift 6 , 2017, 1710.02212.

[8]  H. Rix,et al.  Physical Properties of 15 Quasars at z ≳ 6.5 , 2017, 1710.01251.

[9]  Garching,et al.  Inspiraling Halo Accretion Mapped in Lyman-$\alpha$ Emission around a $z\sim3$ Quasar , 2017, 1709.08228.

[10]  I. McGreer,et al.  Mapping the Lyα Emission around a z ∼ 6.6 QSO with MUSE: Extended Emission and a Companion at a Close Separation , 2017, 1709.06096.

[11]  L. Kewley,et al.  Spatially Resolved Patchy Lyα Emission within the Central Kiloparsec of a Strongly Lensed Quasar Host Galaxy at z = 2.8 , 2017, 1708.00453.

[12]  S. Miyazaki,et al.  No Ly α emitters detected around a QSO at z = 6.4: Suppressed by the QSO? , 2017, 1706.04620.

[13]  Observatoire de Geneve,et al.  MUSE-inspired view of the quasar Q2059-360, its Lyman alpha blob, and its neighborhood , 2017, 1705.05728.

[14]  K. Shimasaku,et al.  Active Galactic Nucleus Environments and Feedback to Neighboring Galaxies at z ∼ 5 Probed by Lyα Emitters , 2017, 1705.04753.

[15]  J. Silverman,et al.  Clustering of quasars in a wide luminosity range at redshift 4 with Subaru Hyper Suprime-Cam wide field imaging , 2017, 1704.08461.

[16]  Taiwan,et al.  Luminous Quasars Do Not Live in the Most Overdense Regions of Galaxies at z~4 , 2017, 1704.06050.

[17]  Durham,et al.  The COS-Halos Survey: Metallicities in the Low-redshift Circumgalactic Medium , 2017, 1702.02618.

[18]  Z. Cai,et al.  Discovery of an Enormous Lyα Nebula in a Massive Galaxy Overdensity at z = 2.3 , 2016, 1609.04021.

[19]  A. Myers,et al.  The Sloan Digital Sky Survey Quasar Catalog: Twelfth data release , 2016, 1608.06483.

[20]  S. Kozłowski VIRIAL BLACK HOLE MASS ESTIMATES FOR 280,000 AGNs FROM THE SDSS BROADBAND PHOTOMETRY AND SINGLE-EPOCH SPECTRA , 2016, 1609.09489.

[21]  H. Rix,et al.  THE PAN-STARRS1 DISTANT z > 5.6 QUASAR SURVEY: MORE THAN 100 QUASARS WITHIN THE FIRST GYR OF THE UNIVERSE , 2016, 1608.03279.

[22]  J. Prochaska,et al.  MUSE searches for galaxies near very metal-poor gas clouds at z ∼ 3: new constraints for cold accretion models , 2016, 1607.03893.

[23]  H. Finley,et al.  Extended Lyα emission around quasars with eclipsing damped Lyα systems , 2016, 1606.03028.

[24]  Simon J. Lilly,et al.  UBIQUITOUS GIANT Lyα NEBULAE AROUND THE BRIGHTEST QUASARS AT z ∼ 3.5 REVEALED WITH MUSE , 2016, 1605.01422.

[25]  Garching,et al.  THE STACKED LYα EMISSION PROFILE FROM THE CIRCUM-GALACTIC MEDIUM OF z ∼ 2 QUASARS , 2016, 1604.02942.

[26]  J. Brinchmann,et al.  POSSIBLE SIGNATURES OF A COLD-FLOW DISK FROM MUSE USING A z ∼ 1 GALAXY–QUASAR PAIR TOWARD SDSS J1422−0001 , 2016, 1601.07567.

[27]  U. Tokyo,et al.  Quasar clustering in a galaxy and quasar formation model based on ultra high-resolution N-body simulations , 2015, 1512.00458.

[28]  G. Rieke,et al.  THE CONTRIBUTION OF HOST GALAXIES TO THE INFRARED ENERGY OUTPUT OF z ≳ 5.0 QUASARS , 2015, 1511.05938.

[29]  M. Murphy,et al.  The dust content of damped Lyman α systems in the Sloan Digital Sky Survey , 2015, 1510.05667.

[30]  K. Shimasaku,et al.  Statistical properties of diffuse Lyα haloes around star-forming galaxies at z ∼ 2 , 2015, 1509.09001.

[31]  E. Emsellem,et al.  Extended Lyman α haloes around individual high-redshift galaxies revealed by MUSE , 2015, 1509.05143.

[32]  R. McMahon,et al.  BRIGHT [C ii] AND DUST EMISSION IN THREE z > 6.6 QUASAR HOST GALAXIES OBSERVED BY ALMA , 2015, 1511.07432.

[33]  J. Prochaska,et al.  QUASARS PROBING QUASARS. VIII. THE PHYSICAL PROPERTIES OF THE COOL CIRCUMGALACTIC MEDIUM SURROUNDING z ∼ 2–3 MASSIVE GALAXIES HOSTING QUASARS , 2015, 1510.06018.

[34]  Adam D. Myers,et al.  Clustering of intermediate redshift quasars using the final SDSS III-BOSS sample , 2015, 1507.08380.

[35]  M. Bremer,et al.  Dissecting the complex environment of a distant quasar with MUSE , 2015, 1507.07919.

[36]  Sean D. Johnson,et al.  On the origin of excess cool gas in quasar host haloes , 2015, 1505.07838.

[37]  J. Prochaska,et al.  Quasar quartet embedded in giant nebula reveals rare massive structure in distant universe , 2015, Science.

[38]  J. Prochaska,et al.  The first ultraviolet quasar-stacked spectrum at z ≃ 2.4 from WFC3 , 2015, 1503.02075.

[39]  F. Anders,et al.  Where is the fuzz? Undetected Lyman α nebulae around quasars at z ~ 2.3 , 2015, 1502.05132.

[40]  Zhiyuan Ma,et al.  CO-EVOLUTION OF EXTREME STAR FORMATION AND QUASARS: HINTS FROM HERSCHEL AND THE SLOAN DIGITAL SKY SURVEY , 2015, 1501.01240.

[41]  P. Weilbacher,et al.  The MUSE 3D view of the Hubble Deep Field South , 2014, 1411.7667.

[42]  D. Padgett,et al.  THE MOST LUMINOUS GALAXIES DISCOVERED BY WISE , 2014, 1410.1751.

[43]  J. Prochaska,et al.  QUASARS PROBING QUASARS. VII. THE PINNACLE OF THE COOL CIRCUMGALACTIC MEDIUM SURROUNDS MASSIVE z ∼ 2 GALAXIES , 2014, 1409.6344.

[44]  N. Roche,et al.  Spectroscopy of 7 radio-loud QSOs at 2 < z < 6: giant Lyman α emission nebulae accreting on to host galaxies , 2014, 1407.4046.

[45]  A. Treves,et al.  The extent of the Mg ii absorbing circumgalactic medium of quasars , 2014, 1403.5559.

[46]  K. Shimasaku,et al.  Diffuse Lyα haloes around galaxies at z = 2.2–6.6: implications for galaxy formation and cosmic reionization , 2014, 1403.0732.

[47]  H. Rix,et al.  SPECTRAL ENERGY DISTRIBUTIONS OF QSOs AT z > 5: COMMON ACTIVE GALACTIC NUCLEUS-HEATED DUST AND OCCASIONALLY STRONG STAR-FORMATION , 2014, 1402.5976.

[48]  Anna Moore,et al.  INTERGALACTIC MEDIUM EMISSION OBSERVATIONS WITH THE COSMIC WEB IMAGER. I. THE CIRCUM-QSO MEDIUM OF QSO 1549+19, AND EVIDENCE FOR A FILAMENTARY GAS INFLOW , 2014, 1402.4816.

[49]  J. Prochaska,et al.  A cosmic web filament revealed in Lyman-α emission around a luminous high-redshift quasar , 2014, Nature.

[50]  F. Pozzi,et al.  The dust content of QSO hosts at high redshift , 2013, 1312.1087.

[51]  P. Hewett,et al.  BLACK HOLE MASS ESTIMATES AND EMISSION-LINE PROPERTIES OF A SAMPLE OF REDSHIFT z > 6.5 QUASARS , 2013, 1311.3260.

[52]  Adam D. Myers,et al.  The Sloan Digital Sky Survey quasar catalog: tenth data release , 2013, 1311.4870.

[53]  Institute for Advanced Study,et al.  QUASARS PROBING QUASARS. VI. EXCESS H i ABSORPTION WITHIN ONE PROPER Mpc OF z ∼ 2 QUASARS , 2013, 1308.6222.

[54]  C. Steidel,et al.  CONSTRAINTS ON HYPERLUMINOUS QSO LIFETIMES VIA FLUORESCENT Lyα EMITTERS AT Z ≃ 2.7 , 2013, 1308.1678.

[55]  Geneva,et al.  Signatures of Cool Gas Fueling a Star-Forming Galaxy at Redshift 2.3 , 2013, Science.

[56]  L. Ho,et al.  Coevolution (Or Not) of Supermassive Black Holes and Host Galaxies: Supplemental Material , 2013, 1304.7762.

[57]  J. Prochaska,et al.  QUASARS PROBING QUASARS. IV. JOINT CONSTRAINTS ON THE CIRCUMGALACTIC MEDIUM FROM ABSORPTION AND EMISSION , 2013, 1303.2708.

[58]  E. C. Herenz,et al.  THE LYMAN ALPHA REFERENCE SAMPLE: EXTENDED LYMAN ALPHA HALOS PRODUCED AT LOW DUST CONTENT , 2013, 1303.0006.

[59]  R. Carswell,et al.  A z = 3.045 Lyα emitting halo hosting a QSO and a possible candidate for AGN-triggered star formation , 2013, 1302.2623.

[60]  A. Omont,et al.  REDSHIFT 6.4 HOST GALAXIES OF 108 SOLAR MASS BLACK HOLES: LOW STAR FORMATION RATE AND DYNAMICAL MASS , 2013, 1302.1587.

[61]  E. Gawiser,et al.  SEARCHING FOR NEUTRAL HYDROGEN HALOS AROUND z ∼ 2.1 AND z ∼ 3.1 Lyα EMITTING GALAXIES , 2013, 1301.0462.

[62]  A. Treves,et al.  On the cool gaseous haloes of quasars , 2012, 1211.3433.

[63]  P. Papaderos,et al.  A massive bubble of extremely metal-poor gas around a collapsing Lyα blob at z = 2.54 , 2012, 1209.4676.

[64]  R. Wechsler,et al.  THE AVERAGE STAR FORMATION HISTORIES OF GALAXIES IN DARK MATTER HALOS FROM z = 0–8 , 2012, 1207.6105.

[65]  N. Scott,et al.  THE MBH–LSPHEROID RELATION AT HIGH AND LOW MASSES, THE QUADRATIC GROWTH OF BLACK HOLES, AND INTERMEDIATE-MASS BLACK HOLE CANDIDATES , 2012, 1211.3199.

[66]  J. Houck,et al.  INFRARED CLASSIFICATION AND LUMINOSITIES FOR DUSTY ACTIVE GALACTIC NUCLEI AND THE MOST LUMINOUS QUASARS , 2012, 1211.0683.

[67]  R. Bacon,et al.  Lyman-α emission properties of simulated galaxies: interstellar medium structure and inclination effects , 2012, 1208.4781.

[68]  H. Rix,et al.  HUBBLE SPACE TELESCOPE NARROWBAND SEARCH FOR EXTENDED Lyα EMISSION AROUND TWO z > 6 QUASARS , 2012, 1207.2155.

[69]  Israel,et al.  Spectroscopy of extended Lyα envelopes around z = 4.5 quasars , 2012, 1205.3895.

[70]  Tokyo,et al.  Diffuse Lyman Alpha Haloes around Lyman Alpha Emitters at z=3: Do Dark Matter Distributions Determine the Lyman Alpha Spatial Extents? , 2012, 1204.4934.

[71]  A. Myers,et al.  The clustering of intermediate-redshift quasars as measured by the Baryon Oscillation Spectroscopic Survey , 2012, 1203.5306.

[72]  R. Kramer,et al.  Line transfer through clumpy, large-scale outflows: Ly α absorption and haloes around star-forming galaxies , 2012, 1203.3803.

[73]  J. Walsh,et al.  Spectroscopy of the spatially extended Lyα emission around a quasar at z= 6.4 , 2011, 1112.3656.

[74]  J. Hutchings,et al.  A Lyα HALO AROUND A QUASAR AT REDSHIFT z = 6.4 , 2011, 1109.4110.

[75]  G. Richards,et al.  A CATALOG OF QUASAR PROPERTIES FROM SLOAN DIGITAL SKY SURVEY DATA RELEASE 7 , 2011, 2209.03987.

[76]  K. Finlator,et al.  Galaxy evolution in cosmological simulations with outflows ― I. Stellar masses and star formation rates , 2011, 1103.3528.

[77]  M. Pettini,et al.  DIFFUSE Lyα EMITTING HALOS: A GENERIC PROPERTY OF HIGH-REDSHIFT STAR-FORMING GALAXIES , 2011, 1101.2204.

[78]  C. Baugh,et al.  The evolution of AGN across cosmic time: what is downsizing? , 2010, 1011.5222.

[79]  Tokyo,et al.  The Subaru Ly-alpha blob survey: A sample of 100 kpc Ly-alpha blobs at z=3 , 2010, 1010.2877.

[80]  S. Miyazaki,et al.  A LARGE NUMBER OF z > 6 GALAXIES AROUND A QSO AT z = 6.43: EVIDENCE FOR A PROTOCLUSTER? , 2010, 1008.0857.

[81]  G. Richards,et al.  A CATALOG OF QUASAR PROPERTIES FROM SLOAN DIGITAL SKY SURVEY DATA RELEASE 7 , 2010, 1006.5178.

[82]  A. Omont,et al.  EDDINGTON-LIMITED ACCRETION AND THE BLACK HOLE MASS FUNCTION AT REDSHIFT 6 , 2010, 1006.1342.

[83]  S. Miyazaki,et al.  A QSO host galaxy and its Lyα emission at z= 6.43 , 2009, 0908.4079.

[84]  A. Andersen,et al.  Lyα RADIATIVE TRANSFER WITH DUST: ESCAPE FRACTIONS FROM SIMULATED HIGH-REDSHIFT GALAXIES , 2009, 0907.2698.

[85]  D. Weinberg,et al.  Lyα EMISSION FROM COSMIC STRUCTURE. I. FLUORESCENCE , 2009, 0907.0704.

[86]  T. O. S. University,et al.  MASS FUNCTIONS OF THE ACTIVE BLACK HOLES IN DISTANT QUASARS FROM THE LARGE BRIGHT QUASAR SURVEY, THE BRIGHT QUASAR SURVEY, AND THE COLOR-SELECTED SAMPLE OF THE SDSS FALL EQUATORIAL STRIPE , 2009, 0904.3348.

[87]  Daniel Ceverino,et al.  FORMATION OF MASSIVE GALAXIES AT HIGH REDSHIFT: COLD STREAMS, CLUMPY DISKS, AND COMPACT SPHEROIDS , 2009, 0901.2458.

[88]  D. Eisenstein,et al.  Accepted in ApJ. Preprint typeset using L ATEX style emulateapj v. 10/09/06 EXTENDED Lyα NEBULAE AT z ≃ 2.3: AN EXTREMELY RARE AND STRONGLY CLUSTERED POPULATION? 1 , 2022 .

[89]  R. Teyssier,et al.  Cold streams in early massive hot haloes as the main mode of galaxy formation , 2008, Nature.

[90]  Daniel J. B. Smith,et al.  An 80-kpc Lyα halo around a high-redshift type-2 quasi-stellar object , 2008, 0811.1776.

[91]  Gemini,et al.  A young, dusty, compact radio source within a Lyα halo , 2008, 0806.3688.

[92]  J. Prochaska,et al.  QUASARS PROBING QUASARS. III. NEW CLUES TO FEEDBACK, QUENCHING, AND THE PHYSICS OF MASSIVE GALAXY FORMATION , 2008, 0806.0862.

[93]  Princeton,et al.  Deep optical spectroscopy of extended Lyα emission around three radio-quiet z = 4.5 quasars ⋆ , 2008, 0803.2519.

[94]  R. Davé,et al.  Extended Lyman Alpha Nebulae at z=2.3: An Extremely Rare and Strongly Clustered Population , 2008 .

[95]  Celine Peroux,et al.  A Population of Faint Extended Line Emitters and the Host Galaxies of Optically Thick QSO Absorption Systems , 2007, 0711.1354.

[96]  G. Richards,et al.  Biases in Virial Black Hole Masses: An SDSS Perspective , 2007, 0709.3098.

[97]  P. Hopkins,et al.  A Cosmological Framework for the Co-Evolution of Quasars, Supermassive Black Holes, and Elliptical Galaxies. I. Galaxy Mergers and Quasar Activity , 2007, 0706.1243.

[98]  R. Bernstein,et al.  The Optical Extragalactic Background Light: Revisions and Further Comments , 2007 .

[99]  Xiaohui Fan,et al.  Gemini Near-Infrared Spectroscopy of Luminous z ∼ 6 Quasars: Chemical Abundances, Black Hole Masses, and Mg II Absorption , 2007, 0707.1663.

[100]  Thierry Forveille,et al.  Four Quasars above Redshift 6 Discovered by the Canada-France High-z Quasar Survey , 2007, 0706.0914.

[101]  J. Sommer-Larsen,et al.  Lyα Resonant Scattering in Young Galaxies: Predictions from Cosmological Simulations , 2006, astro-ph/0610761.

[102]  J. Brinkmann,et al.  Probing the Evolution of Infrared Properties of z ∼ 6 Quasars: Spitzer Observations , 2006, astro-ph/0608006.

[103]  P. Francis,et al.  Fluorescent Lyman α emission from gas near a QSO at redshift 4.28 , 2006, astro-ph/0605477.

[104]  K. Jahnke,et al.  Extended Lyman-$\alpha$ emission around bright quasars , 2006, astro-ph/0603835.

[105]  Robert J. Brunner,et al.  Quasars Probing Quasars. I. Optically Thick Absorbers near Luminous Quasars , 2006, astro-ph/0603742.

[106]  A. Szalay,et al.  Spectral Energy Distributions and Multiwavelength Selection of Type 1 Quasars , 2006, astro-ph/0601558.

[107]  M. Mori,et al.  The evolution of galaxies from primeval irregulars to present-day ellipticals , 2005, Nature.

[108]  R. Bouwens,et al.  AGN Feedback Causes Downsizing , 2005, astro-ph/0511116.

[109]  C. Steidel,et al.  A Possible Correlation between the Luminosities and Lifetimes of Active Galactic Nuclei , 2005, astro-ph/0505210.

[110]  Stsci,et al.  Number Density of Bright Lyman-Break Galaxies at z〜6 in the Subaru Deep Field , 2005, astro-ph/0504373.

[111]  S. Lilly,et al.  Fluorescent Lyα Emission from the High-Redshift Intergalactic Medium , 2005, astro-ph/0504015.

[112]  P. Møller,et al.  The Lyman-α glow of gas falling into the dark matter halo of a z = 3 galaxy , 2004, Nature.

[113]  M. Mori,et al.  The Nature of Lyα Blobs: Supernova-dominated Primordial Galaxies , 2004, astro-ph/0408410.

[114]  M. Vestergaard,et al.  Occurrence and Global Properties of Narrow C IV λ1549 Å Absorption Lines in Moderate-Redshift Quasars , 2003, astro-ph/0309550.

[115]  J. Brinkmann,et al.  The near-IR properties and continuum shapes of high redshift quasars from the Sloan Digital Sky Survey , 2003, astro-ph/0308178.

[116]  A. Marconi,et al.  The Relation between Black Hole Mass, Bulge Mass, and Near-Infrared Luminosity , 2003, astro-ph/0304274.

[117]  H. Spinrad,et al.  Illuminating protogalaxies? The discovery of extended Lyman-α emission around a QSO at z=4.5 , 2003, astro-ph/0303290.

[118]  S. Okamura,et al.  Subaru Prime Focus Camera — Suprime-Cam , 2002, astro-ph/0211006.

[119]  S. Alam,et al.  Self-Absorption of Ionizing Radiation and Extended Narrow-Line Emission in High-Redshift Quasi-stellar Objects , 2002 .

[120]  J. Dunlop,et al.  On the black hole–bulge mass relation in active and inactive galaxies , 2001, astro-ph/0201081.

[121]  P. Madau,et al.  EARLY METAL ENRICHMENT BY PREGALACTIC OUTFLOWS : II . SIMULATIONS OF BLOW – AWAY , 2001 .

[122]  M. Rees,et al.  Extended Lyα Emission around Young Quasars: A Constraint on Galaxy Formation , 2001, astro-ph/0101174.

[123]  A. Loeb,et al.  In the Beginning: The First Sources of Light and the Reionization of the Universe , 2000, astro-ph/0010468.

[124]  D. Merritt,et al.  The M•-σ Relation for Supermassive Black Holes , 2000, astro-ph/0008310.

[125]  Lu,et al.  Two Different Accretion Classes in Seyfert 1 Galaxies and QSOs , 1999, The Astrophysical journal.

[126]  T. Heckman,et al.  HUBBLE SPACE TELESCOPE Imaging of the Host Galaxies of High-Redshift Radio-loud Quasars , 1999, astro-ph/9904114.

[127]  S. Tremaine,et al.  The Demography of Massive Dark Objects in Galaxy Centers , 1997, astro-ph/9708072.

[128]  Steve Rawlings,et al.  High-redshift radio galaxies and quasars at submillimetre wavelengths: assessing their evolutionary status , 1997, astro-ph/9705094.

[129]  D. Weinberg,et al.  Imaging the Forest of Lyman Limit Systems , 1996 .

[130]  Rene Racine,et al.  THE TELESCOPE POINT SPREAD FUNCTION , 1996 .

[131]  D. Weinberg,et al.  Imaging the Lyman-alpha Forest , 1995, astro-ph/9512138.

[132]  C. Steidel,et al.  Extended Lyα emission around quasars at z > 3.6 , 1992 .

[133]  T. Heckman,et al.  Spectroscopy of spatially extended material around high-redshift radio-loud quasars , 1991 .

[134]  M. Dickinson,et al.  Discovery of an Apparent Companion Galaxy to Q1548+0917 with Z = 2.758 , 1991 .

[135]  W. V. Breugel,et al.  Spatially resolved optical images of high-redshift quasi-stellar objects , 1991 .

[136]  M. Rees Quasars as probes of gas in extended protogalaxies. , 1988 .

[137]  C. Hogan,et al.  Lyman-alpha emission from the Lyman-alpha forest. [in high red shift quasar spectra due to molecular clouds] , 1987 .

[138]  J. Gunn,et al.  Stellar spectrometric atlas 3130 A - 10800 A , 1983 .

[139]  Ivan R. King,et al.  THE PROFILE OF A STAR IMAGE , 1971 .