Possible evolution of the circum-galactic medium around QSOs with QSO age and cosmic time revealed by Ly α haloes
暂无分享,去创建一个
S. Miyazaki | Y. Utsumi | K. Shimasaku | T. Goto | N. Kashikawa | T. Hashimoto | C. Chiang | S. Kim | R. Momose
[1] Elisabeta Lusso,et al. QSO MUSEUM I: a sample of 61 extended Ly α-emission nebulae surroundingz∼ 3 quasars , 2018, Monthly Notices of the Royal Astronomical Society.
[2] Ran Wang,et al. Keck/Palomar Cosmic Web Imagers Reveal an Enormous Lyα Nebula in an Extremely Overdense Quasi-stellar Object Pair Field at z = 2.45 , 2018, The Astrophysical Journal.
[3] R. Maiolino,et al. Extended and broad Ly α emission around a BAL quasar at z ∼ 5 , 2018, 1802.03400.
[4] H. Rix,et al. An ALMA [C ii] Survey of 27 Quasars at z > 5.94 , 2018, The Astrophysical Journal.
[5] K. Sugimura,et al. Modelling of Lyman-alpha emitting galaxies and ionized bubbles at the epoch of reionization , 2017, 1701.05571.
[6] J. Brinchmann,et al. The MUSE Hubble Ultra Deep Field Survey - VIII. Extended Lyman-α haloes around high-z star-forming galaxies , 2017, 1710.10271.
[7] A. Omont,et al. A Wide Dispersion in Star Formation Rate and Dynamical Mass of 108 Solar Mass Black Hole Host Galaxies at Redshift 6 , 2017, 1710.02212.
[8] H. Rix,et al. Physical Properties of 15 Quasars at z ≳ 6.5 , 2017, 1710.01251.
[9] Garching,et al. Inspiraling Halo Accretion Mapped in Lyman-$\alpha$ Emission around a $z\sim3$ Quasar , 2017, 1709.08228.
[10] I. McGreer,et al. Mapping the Lyα Emission around a z ∼ 6.6 QSO with MUSE: Extended Emission and a Companion at a Close Separation , 2017, 1709.06096.
[11] L. Kewley,et al. Spatially Resolved Patchy Lyα Emission within the Central Kiloparsec of a Strongly Lensed Quasar Host Galaxy at z = 2.8 , 2017, 1708.00453.
[12] S. Miyazaki,et al. No Ly α emitters detected around a QSO at z = 6.4: Suppressed by the QSO? , 2017, 1706.04620.
[13] Observatoire de Geneve,et al. MUSE-inspired view of the quasar Q2059-360, its Lyman alpha blob, and its neighborhood , 2017, 1705.05728.
[14] K. Shimasaku,et al. Active Galactic Nucleus Environments and Feedback to Neighboring Galaxies at z ∼ 5 Probed by Lyα Emitters , 2017, 1705.04753.
[15] J. Silverman,et al. Clustering of quasars in a wide luminosity range at redshift 4 with Subaru Hyper Suprime-Cam wide field imaging , 2017, 1704.08461.
[16] Taiwan,et al. Luminous Quasars Do Not Live in the Most Overdense Regions of Galaxies at z~4 , 2017, 1704.06050.
[17] Durham,et al. The COS-Halos Survey: Metallicities in the Low-redshift Circumgalactic Medium , 2017, 1702.02618.
[18] Z. Cai,et al. Discovery of an Enormous Lyα Nebula in a Massive Galaxy Overdensity at z = 2.3 , 2016, 1609.04021.
[19] A. Myers,et al. The Sloan Digital Sky Survey Quasar Catalog: Twelfth data release , 2016, 1608.06483.
[20] S. Kozłowski. VIRIAL BLACK HOLE MASS ESTIMATES FOR 280,000 AGNs FROM THE SDSS BROADBAND PHOTOMETRY AND SINGLE-EPOCH SPECTRA , 2016, 1609.09489.
[21] H. Rix,et al. THE PAN-STARRS1 DISTANT z > 5.6 QUASAR SURVEY: MORE THAN 100 QUASARS WITHIN THE FIRST GYR OF THE UNIVERSE , 2016, 1608.03279.
[22] J. Prochaska,et al. MUSE searches for galaxies near very metal-poor gas clouds at z ∼ 3: new constraints for cold accretion models , 2016, 1607.03893.
[23] H. Finley,et al. Extended Lyα emission around quasars with eclipsing damped Lyα systems , 2016, 1606.03028.
[24] Simon J. Lilly,et al. UBIQUITOUS GIANT Lyα NEBULAE AROUND THE BRIGHTEST QUASARS AT z ∼ 3.5 REVEALED WITH MUSE , 2016, 1605.01422.
[25] Garching,et al. THE STACKED LYα EMISSION PROFILE FROM THE CIRCUM-GALACTIC MEDIUM OF z ∼ 2 QUASARS , 2016, 1604.02942.
[26] J. Brinchmann,et al. POSSIBLE SIGNATURES OF A COLD-FLOW DISK FROM MUSE USING A z ∼ 1 GALAXY–QUASAR PAIR TOWARD SDSS J1422−0001 , 2016, 1601.07567.
[27] U. Tokyo,et al. Quasar clustering in a galaxy and quasar formation model based on ultra high-resolution N-body simulations , 2015, 1512.00458.
[28] G. Rieke,et al. THE CONTRIBUTION OF HOST GALAXIES TO THE INFRARED ENERGY OUTPUT OF z ≳ 5.0 QUASARS , 2015, 1511.05938.
[29] M. Murphy,et al. The dust content of damped Lyman α systems in the Sloan Digital Sky Survey , 2015, 1510.05667.
[30] K. Shimasaku,et al. Statistical properties of diffuse Lyα haloes around star-forming galaxies at z ∼ 2 , 2015, 1509.09001.
[31] E. Emsellem,et al. Extended Lyman α haloes around individual high-redshift galaxies revealed by MUSE , 2015, 1509.05143.
[32] R. McMahon,et al. BRIGHT [C ii] AND DUST EMISSION IN THREE z > 6.6 QUASAR HOST GALAXIES OBSERVED BY ALMA , 2015, 1511.07432.
[33] J. Prochaska,et al. QUASARS PROBING QUASARS. VIII. THE PHYSICAL PROPERTIES OF THE COOL CIRCUMGALACTIC MEDIUM SURROUNDING z ∼ 2–3 MASSIVE GALAXIES HOSTING QUASARS , 2015, 1510.06018.
[34] Adam D. Myers,et al. Clustering of intermediate redshift quasars using the final SDSS III-BOSS sample , 2015, 1507.08380.
[35] M. Bremer,et al. Dissecting the complex environment of a distant quasar with MUSE , 2015, 1507.07919.
[36] Sean D. Johnson,et al. On the origin of excess cool gas in quasar host haloes , 2015, 1505.07838.
[37] J. Prochaska,et al. Quasar quartet embedded in giant nebula reveals rare massive structure in distant universe , 2015, Science.
[38] J. Prochaska,et al. The first ultraviolet quasar-stacked spectrum at z ≃ 2.4 from WFC3 , 2015, 1503.02075.
[39] F. Anders,et al. Where is the fuzz? Undetected Lyman α nebulae around quasars at z ~ 2.3 , 2015, 1502.05132.
[40] Zhiyuan Ma,et al. CO-EVOLUTION OF EXTREME STAR FORMATION AND QUASARS: HINTS FROM HERSCHEL AND THE SLOAN DIGITAL SKY SURVEY , 2015, 1501.01240.
[41] P. Weilbacher,et al. The MUSE 3D view of the Hubble Deep Field South , 2014, 1411.7667.
[42] D. Padgett,et al. THE MOST LUMINOUS GALAXIES DISCOVERED BY WISE , 2014, 1410.1751.
[43] J. Prochaska,et al. QUASARS PROBING QUASARS. VII. THE PINNACLE OF THE COOL CIRCUMGALACTIC MEDIUM SURROUNDS MASSIVE z ∼ 2 GALAXIES , 2014, 1409.6344.
[44] N. Roche,et al. Spectroscopy of 7 radio-loud QSOs at 2 < z < 6: giant Lyman α emission nebulae accreting on to host galaxies , 2014, 1407.4046.
[45] A. Treves,et al. The extent of the Mg ii absorbing circumgalactic medium of quasars , 2014, 1403.5559.
[46] K. Shimasaku,et al. Diffuse Lyα haloes around galaxies at z = 2.2–6.6: implications for galaxy formation and cosmic reionization , 2014, 1403.0732.
[47] H. Rix,et al. SPECTRAL ENERGY DISTRIBUTIONS OF QSOs AT z > 5: COMMON ACTIVE GALACTIC NUCLEUS-HEATED DUST AND OCCASIONALLY STRONG STAR-FORMATION , 2014, 1402.5976.
[48] Anna Moore,et al. INTERGALACTIC MEDIUM EMISSION OBSERVATIONS WITH THE COSMIC WEB IMAGER. I. THE CIRCUM-QSO MEDIUM OF QSO 1549+19, AND EVIDENCE FOR A FILAMENTARY GAS INFLOW , 2014, 1402.4816.
[49] J. Prochaska,et al. A cosmic web filament revealed in Lyman-α emission around a luminous high-redshift quasar , 2014, Nature.
[50] F. Pozzi,et al. The dust content of QSO hosts at high redshift , 2013, 1312.1087.
[51] P. Hewett,et al. BLACK HOLE MASS ESTIMATES AND EMISSION-LINE PROPERTIES OF A SAMPLE OF REDSHIFT z > 6.5 QUASARS , 2013, 1311.3260.
[52] Adam D. Myers,et al. The Sloan Digital Sky Survey quasar catalog: tenth data release , 2013, 1311.4870.
[53] Institute for Advanced Study,et al. QUASARS PROBING QUASARS. VI. EXCESS H i ABSORPTION WITHIN ONE PROPER Mpc OF z ∼ 2 QUASARS , 2013, 1308.6222.
[54] C. Steidel,et al. CONSTRAINTS ON HYPERLUMINOUS QSO LIFETIMES VIA FLUORESCENT Lyα EMITTERS AT Z ≃ 2.7 , 2013, 1308.1678.
[55] Geneva,et al. Signatures of Cool Gas Fueling a Star-Forming Galaxy at Redshift 2.3 , 2013, Science.
[56] L. Ho,et al. Coevolution (Or Not) of Supermassive Black Holes and Host Galaxies: Supplemental Material , 2013, 1304.7762.
[57] J. Prochaska,et al. QUASARS PROBING QUASARS. IV. JOINT CONSTRAINTS ON THE CIRCUMGALACTIC MEDIUM FROM ABSORPTION AND EMISSION , 2013, 1303.2708.
[58] E. C. Herenz,et al. THE LYMAN ALPHA REFERENCE SAMPLE: EXTENDED LYMAN ALPHA HALOS PRODUCED AT LOW DUST CONTENT , 2013, 1303.0006.
[59] R. Carswell,et al. A z = 3.045 Lyα emitting halo hosting a QSO and a possible candidate for AGN-triggered star formation , 2013, 1302.2623.
[60] A. Omont,et al. REDSHIFT 6.4 HOST GALAXIES OF 108 SOLAR MASS BLACK HOLES: LOW STAR FORMATION RATE AND DYNAMICAL MASS , 2013, 1302.1587.
[61] E. Gawiser,et al. SEARCHING FOR NEUTRAL HYDROGEN HALOS AROUND z ∼ 2.1 AND z ∼ 3.1 Lyα EMITTING GALAXIES , 2013, 1301.0462.
[62] A. Treves,et al. On the cool gaseous haloes of quasars , 2012, 1211.3433.
[63] P. Papaderos,et al. A massive bubble of extremely metal-poor gas around a collapsing Lyα blob at z = 2.54 , 2012, 1209.4676.
[64] R. Wechsler,et al. THE AVERAGE STAR FORMATION HISTORIES OF GALAXIES IN DARK MATTER HALOS FROM z = 0–8 , 2012, 1207.6105.
[65] N. Scott,et al. THE MBH–LSPHEROID RELATION AT HIGH AND LOW MASSES, THE QUADRATIC GROWTH OF BLACK HOLES, AND INTERMEDIATE-MASS BLACK HOLE CANDIDATES , 2012, 1211.3199.
[66] J. Houck,et al. INFRARED CLASSIFICATION AND LUMINOSITIES FOR DUSTY ACTIVE GALACTIC NUCLEI AND THE MOST LUMINOUS QUASARS , 2012, 1211.0683.
[67] R. Bacon,et al. Lyman-α emission properties of simulated galaxies: interstellar medium structure and inclination effects , 2012, 1208.4781.
[68] H. Rix,et al. HUBBLE SPACE TELESCOPE NARROWBAND SEARCH FOR EXTENDED Lyα EMISSION AROUND TWO z > 6 QUASARS , 2012, 1207.2155.
[69] Israel,et al. Spectroscopy of extended Lyα envelopes around z = 4.5 quasars , 2012, 1205.3895.
[70] Tokyo,et al. Diffuse Lyman Alpha Haloes around Lyman Alpha Emitters at z=3: Do Dark Matter Distributions Determine the Lyman Alpha Spatial Extents? , 2012, 1204.4934.
[71] A. Myers,et al. The clustering of intermediate-redshift quasars as measured by the Baryon Oscillation Spectroscopic Survey , 2012, 1203.5306.
[72] R. Kramer,et al. Line transfer through clumpy, large-scale outflows: Ly α absorption and haloes around star-forming galaxies , 2012, 1203.3803.
[73] J. Walsh,et al. Spectroscopy of the spatially extended Lyα emission around a quasar at z= 6.4 , 2011, 1112.3656.
[74] J. Hutchings,et al. A Lyα HALO AROUND A QUASAR AT REDSHIFT z = 6.4 , 2011, 1109.4110.
[75] G. Richards,et al. A CATALOG OF QUASAR PROPERTIES FROM SLOAN DIGITAL SKY SURVEY DATA RELEASE 7 , 2011, 2209.03987.
[76] K. Finlator,et al. Galaxy evolution in cosmological simulations with outflows ― I. Stellar masses and star formation rates , 2011, 1103.3528.
[77] M. Pettini,et al. DIFFUSE Lyα EMITTING HALOS: A GENERIC PROPERTY OF HIGH-REDSHIFT STAR-FORMING GALAXIES , 2011, 1101.2204.
[78] C. Baugh,et al. The evolution of AGN across cosmic time: what is downsizing? , 2010, 1011.5222.
[79] Tokyo,et al. The Subaru Ly-alpha blob survey: A sample of 100 kpc Ly-alpha blobs at z=3 , 2010, 1010.2877.
[80] S. Miyazaki,et al. A LARGE NUMBER OF z > 6 GALAXIES AROUND A QSO AT z = 6.43: EVIDENCE FOR A PROTOCLUSTER? , 2010, 1008.0857.
[81] G. Richards,et al. A CATALOG OF QUASAR PROPERTIES FROM SLOAN DIGITAL SKY SURVEY DATA RELEASE 7 , 2010, 1006.5178.
[82] A. Omont,et al. EDDINGTON-LIMITED ACCRETION AND THE BLACK HOLE MASS FUNCTION AT REDSHIFT 6 , 2010, 1006.1342.
[83] S. Miyazaki,et al. A QSO host galaxy and its Lyα emission at z= 6.43 , 2009, 0908.4079.
[84] A. Andersen,et al. Lyα RADIATIVE TRANSFER WITH DUST: ESCAPE FRACTIONS FROM SIMULATED HIGH-REDSHIFT GALAXIES , 2009, 0907.2698.
[85] D. Weinberg,et al. Lyα EMISSION FROM COSMIC STRUCTURE. I. FLUORESCENCE , 2009, 0907.0704.
[86] T. O. S. University,et al. MASS FUNCTIONS OF THE ACTIVE BLACK HOLES IN DISTANT QUASARS FROM THE LARGE BRIGHT QUASAR SURVEY, THE BRIGHT QUASAR SURVEY, AND THE COLOR-SELECTED SAMPLE OF THE SDSS FALL EQUATORIAL STRIPE , 2009, 0904.3348.
[87] Daniel Ceverino,et al. FORMATION OF MASSIVE GALAXIES AT HIGH REDSHIFT: COLD STREAMS, CLUMPY DISKS, AND COMPACT SPHEROIDS , 2009, 0901.2458.
[88] D. Eisenstein,et al. Accepted in ApJ. Preprint typeset using L ATEX style emulateapj v. 10/09/06 EXTENDED Lyα NEBULAE AT z ≃ 2.3: AN EXTREMELY RARE AND STRONGLY CLUSTERED POPULATION? 1 , 2022 .
[89] R. Teyssier,et al. Cold streams in early massive hot haloes as the main mode of galaxy formation , 2008, Nature.
[90] Daniel J. B. Smith,et al. An 80-kpc Lyα halo around a high-redshift type-2 quasi-stellar object , 2008, 0811.1776.
[91] Gemini,et al. A young, dusty, compact radio source within a Lyα halo , 2008, 0806.3688.
[92] J. Prochaska,et al. QUASARS PROBING QUASARS. III. NEW CLUES TO FEEDBACK, QUENCHING, AND THE PHYSICS OF MASSIVE GALAXY FORMATION , 2008, 0806.0862.
[93] Princeton,et al. Deep optical spectroscopy of extended Lyα emission around three radio-quiet z = 4.5 quasars ⋆ , 2008, 0803.2519.
[94] R. Davé,et al. Extended Lyman Alpha Nebulae at z=2.3: An Extremely Rare and Strongly Clustered Population , 2008 .
[95] Celine Peroux,et al. A Population of Faint Extended Line Emitters and the Host Galaxies of Optically Thick QSO Absorption Systems , 2007, 0711.1354.
[96] G. Richards,et al. Biases in Virial Black Hole Masses: An SDSS Perspective , 2007, 0709.3098.
[97] P. Hopkins,et al. A Cosmological Framework for the Co-Evolution of Quasars, Supermassive Black Holes, and Elliptical Galaxies. I. Galaxy Mergers and Quasar Activity , 2007, 0706.1243.
[98] R. Bernstein,et al. The Optical Extragalactic Background Light: Revisions and Further Comments , 2007 .
[99] Xiaohui Fan,et al. Gemini Near-Infrared Spectroscopy of Luminous z ∼ 6 Quasars: Chemical Abundances, Black Hole Masses, and Mg II Absorption , 2007, 0707.1663.
[100] Thierry Forveille,et al. Four Quasars above Redshift 6 Discovered by the Canada-France High-z Quasar Survey , 2007, 0706.0914.
[101] J. Sommer-Larsen,et al. Lyα Resonant Scattering in Young Galaxies: Predictions from Cosmological Simulations , 2006, astro-ph/0610761.
[102] J. Brinkmann,et al. Probing the Evolution of Infrared Properties of z ∼ 6 Quasars: Spitzer Observations , 2006, astro-ph/0608006.
[103] P. Francis,et al. Fluorescent Lyman α emission from gas near a QSO at redshift 4.28 , 2006, astro-ph/0605477.
[104] K. Jahnke,et al. Extended Lyman-$\alpha$ emission around bright quasars , 2006, astro-ph/0603835.
[105] Robert J. Brunner,et al. Quasars Probing Quasars. I. Optically Thick Absorbers near Luminous Quasars , 2006, astro-ph/0603742.
[106] A. Szalay,et al. Spectral Energy Distributions and Multiwavelength Selection of Type 1 Quasars , 2006, astro-ph/0601558.
[107] M. Mori,et al. The evolution of galaxies from primeval irregulars to present-day ellipticals , 2005, Nature.
[108] R. Bouwens,et al. AGN Feedback Causes Downsizing , 2005, astro-ph/0511116.
[109] C. Steidel,et al. A Possible Correlation between the Luminosities and Lifetimes of Active Galactic Nuclei , 2005, astro-ph/0505210.
[110] Stsci,et al. Number Density of Bright Lyman-Break Galaxies at z〜6 in the Subaru Deep Field , 2005, astro-ph/0504373.
[111] S. Lilly,et al. Fluorescent Lyα Emission from the High-Redshift Intergalactic Medium , 2005, astro-ph/0504015.
[112] P. Møller,et al. The Lyman-α glow of gas falling into the dark matter halo of a z = 3 galaxy , 2004, Nature.
[113] M. Mori,et al. The Nature of Lyα Blobs: Supernova-dominated Primordial Galaxies , 2004, astro-ph/0408410.
[114] M. Vestergaard,et al. Occurrence and Global Properties of Narrow C IV λ1549 Å Absorption Lines in Moderate-Redshift Quasars , 2003, astro-ph/0309550.
[115] J. Brinkmann,et al. The near-IR properties and continuum shapes of high redshift quasars from the Sloan Digital Sky Survey , 2003, astro-ph/0308178.
[116] A. Marconi,et al. The Relation between Black Hole Mass, Bulge Mass, and Near-Infrared Luminosity , 2003, astro-ph/0304274.
[117] H. Spinrad,et al. Illuminating protogalaxies? The discovery of extended Lyman-α emission around a QSO at z=4.5 , 2003, astro-ph/0303290.
[118] S. Okamura,et al. Subaru Prime Focus Camera — Suprime-Cam , 2002, astro-ph/0211006.
[119] S. Alam,et al. Self-Absorption of Ionizing Radiation and Extended Narrow-Line Emission in High-Redshift Quasi-stellar Objects , 2002 .
[120] J. Dunlop,et al. On the black hole–bulge mass relation in active and inactive galaxies , 2001, astro-ph/0201081.
[121] P. Madau,et al. EARLY METAL ENRICHMENT BY PREGALACTIC OUTFLOWS : II . SIMULATIONS OF BLOW – AWAY , 2001 .
[122] M. Rees,et al. Extended Lyα Emission around Young Quasars: A Constraint on Galaxy Formation , 2001, astro-ph/0101174.
[123] A. Loeb,et al. In the Beginning: The First Sources of Light and the Reionization of the Universe , 2000, astro-ph/0010468.
[124] D. Merritt,et al. The M•-σ Relation for Supermassive Black Holes , 2000, astro-ph/0008310.
[125] Lu,et al. Two Different Accretion Classes in Seyfert 1 Galaxies and QSOs , 1999, The Astrophysical journal.
[126] T. Heckman,et al. HUBBLE SPACE TELESCOPE Imaging of the Host Galaxies of High-Redshift Radio-loud Quasars , 1999, astro-ph/9904114.
[127] S. Tremaine,et al. The Demography of Massive Dark Objects in Galaxy Centers , 1997, astro-ph/9708072.
[128] Steve Rawlings,et al. High-redshift radio galaxies and quasars at submillimetre wavelengths: assessing their evolutionary status , 1997, astro-ph/9705094.
[129] D. Weinberg,et al. Imaging the Forest of Lyman Limit Systems , 1996 .
[130] Rene Racine,et al. THE TELESCOPE POINT SPREAD FUNCTION , 1996 .
[131] D. Weinberg,et al. Imaging the Lyman-alpha Forest , 1995, astro-ph/9512138.
[132] C. Steidel,et al. Extended Lyα emission around quasars at z > 3.6 , 1992 .
[133] T. Heckman,et al. Spectroscopy of spatially extended material around high-redshift radio-loud quasars , 1991 .
[134] M. Dickinson,et al. Discovery of an Apparent Companion Galaxy to Q1548+0917 with Z = 2.758 , 1991 .
[135] W. V. Breugel,et al. Spatially resolved optical images of high-redshift quasi-stellar objects , 1991 .
[136] M. Rees. Quasars as probes of gas in extended protogalaxies. , 1988 .
[137] C. Hogan,et al. Lyman-alpha emission from the Lyman-alpha forest. [in high red shift quasar spectra due to molecular clouds] , 1987 .
[138] J. Gunn,et al. Stellar spectrometric atlas 3130 A - 10800 A , 1983 .
[139] Ivan R. King,et al. THE PROFILE OF A STAR IMAGE , 1971 .