Approximations of cell-induced phase transitions in fibrous biomaterials: Γ-convergence analysis
暂无分享,去创建一个
Konstantinos Koumatos | Charalambos Makridakis | Phoebus Rosakis | Georgios Grekas | P. Rosakis | C. Makridakis | G. Grekas | K. Koumatos
[1] Albert K. Harris,et al. Fibroblast traction as a mechanism for collagen morphogenesis , 1981, Nature.
[2] R. Eymard,et al. Discretisation of heterogeneous and anisotropic diffusion problems on general non-conforming meshes. SUSHI: a scheme using stabilisation and hybrid interfaces , 2008, 0801.1430.
[3] O. Karakashian. ADAPTIVE DISCONTINUOUS GALERKIN APPROXIMATIONS OF SECOND-ORDER ELLIPTIC PROBLEMS , 2004 .
[4] A. Ern,et al. Mathematical Aspects of Discontinuous Galerkin Methods , 2011 .
[5] L. R. Scott,et al. The Mathematical Theory of Finite Element Methods , 1994 .
[6] P. Rosakis,et al. Cells exploit a phase transition to establish interconnections in fibrous extracellular matrices , 2019, 1905.11246.
[7] Andrea Braides. Local Minimization, Variational Evolution and Γ-Convergence , 2013 .
[8] Kellen Petersen August. Real Analysis , 2009 .
[9] Ohannes A. Karakashian,et al. A Posteriori Error Estimates for a Discontinuous Galerkin Approximation of Second-Order Elliptic Problems , 2003, SIAM J. Numer. Anal..
[10] A. Buffa,et al. Compact embeddings of broken Sobolev spaces and applications , 2009 .
[11] Stephen J. Wright,et al. Numerical Optimization , 2018, Fundamental Statistical Inference.
[12] Alexandre Ern,et al. Discrete functional analysis tools for Discontinuous Galerkin methods with application to the incompressible Navier-Stokes equations , 2010, Math. Comput..
[13] S. Rebay,et al. A High-Order Accurate Discontinuous Finite Element Method for the Numerical Solution of the Compressible Navier-Stokes Equations , 1997 .
[14] Anders Logg,et al. The FEniCS Project Version 1.5 , 2015 .
[15] Endre Süli,et al. Poincaré-type inequalities for broken Sobolev spaces , 2003 .
[16] H. Brezis. Functional Analysis, Sobolev Spaces and Partial Differential Equations , 2010 .
[17] Ricardo H. Nochetto,et al. Bilayer Plates: Model Reduction, Γ‐Convergent Finite Element Approximation, and Discrete Gradient Flow , 2015, 1506.03335.
[18] L. Evans. Measure theory and fine properties of functions , 1992 .
[19] F. Brezzi,et al. Discontinuous Galerkin approximations for elliptic problems , 2000 .
[20] Lisandro Dalcin,et al. Parallel distributed computing using Python , 2011 .
[21] A K Harris,et al. Connective tissue morphogenesis by fibroblast traction. I. Tissue culture observations. , 1982, Developmental biology.
[22] M. Rao,et al. Theory of Orlicz spaces , 1991 .
[23] G. D. Maso,et al. An Introduction to-convergence , 1993 .
[24] M. Ortiz,et al. Optimal BV estimates for a discontinuous Galerkin method for linear elasticity , 2004 .
[25] G. Sweers. A survey on boundary conditions for the biharmonic , 2009 .
[26] P. Rosakis,et al. Microbuckling of fibrin provides a mechanism for cell mechanosensing , 2014, Journal of The Royal Society Interface.
[27] Mitchell Luskin,et al. On the computation of crystalline microstructure , 1996, Acta Numerica.
[28] Susanne C. Brenner,et al. C0 Interior Penalty Methods for Fourth Order Elliptic Boundary Value Problems on Polygonal Domains , 2005, J. Sci. Comput..
[29] J. Ball,et al. Fine phase mixtures as minimizers of energy , 1987 .
[30] Chris H. Rycroft,et al. Rapid disorganization of mechanically interacting systems of mammary acini , 2013, Proceedings of the National Academy of Sciences.
[31] B. Dacorogna. Introduction to the calculus of variations , 2004 .
[32] Andrea Braides. Gamma-Convergence for Beginners , 2002 .
[33] B. Dacorogna. Direct methods in the calculus of variations , 1989 .
[34] Charalambos Makridakis,et al. On Atomistic-to-Continuum Couplings without Ghost Forces in Three Dimensions , 2012, 1211.7158.