Structure and upconversion luminescence properties of Er3 +–Mo6 + codoped Yb2Ti2O7 films

Abstract Er 3 + –Mo 6 + codoped Yb 2 Ti 2 O 7 thin films have been prepared on Si(100) substrates by a sol–gel method and spin-coating technique. A well-defined face-centered cubic phase of Yb 2 Ti 2 O 7 was observed without the existence of either an Er or a Mo compound in Er 3 + –Mo 6 + codoped Yb 2 Ti 2 O 7 films. Mo 6 + codoping improved the morphology quality and increased the grain size of Er 3 + doped Yb 2 Ti 2 O 7 films. Compared with Er 3 + –Mo 6 + codoped Yb 2 Ti 2 O 7 powder, Er 3 + –Mo 6 + codoped Yb 2 Ti 2 O 7 films show different green and red upconversion emissions properties under 976 nm laser diode excitation. The Er 3 + –Mo 6 + codoped Yb 2 Ti 2 O 7 films showed higher luminescence intensity than the Er 3 + doped Yb 2 Ti 2 O 7 films, which was attributed to the transfer of high excited state energy from Yb 3 + –MoO 4 2 − dimers to Er 3 + .

[1]  S. Wade,et al.  Fluorescence intensity ratio technique for optical fiber point temperature sensing , 2003 .

[2]  Markus P. Hehlen,et al.  Power dependence of upconversion luminescence in lanthanide and transition-metal-ion systems , 2000 .

[3]  H. Güdel,et al.  New type of near-infrared to visible photon upconversion in Tm2+-doped CsCaI3. , 2006, Journal of the American Chemical Society.

[4]  Yangyang He,et al.  Temperature Sensing and In Vivo Imaging by Molybdenum Sensitized Visible Upconversion Luminescence of Rare‐Earth Oxides , 2012, Advanced materials.

[5]  B. Dong,et al.  Effects of Yb3+ codoping on visible and near infrared emissions of Er3+-Yb3+ codoped Al2O3 powders by the sol-gel method , 2008 .

[6]  K. Yubuta,et al.  Flux Growth of Highly Crystalline NaYF4:Ln (Ln = Yb, Er, Tm) Crystals with Upconversion Fluorescence , 2011 .

[7]  D. Bao,et al.  Strong upconversion luminescence properties of Yb3+ and Er3+ codoped Bi4Ti3O12 ferroelectric thin films , 2009 .

[8]  Bin Dong,et al.  Optical thermometry through infrared excited green upconversion emissions in Er3+–Yb3+ codoped Al2O3 , 2007 .

[9]  Milin Zhang,et al.  Preparation and up-conversion luminescence of hollow La2O3:Ln (Ln = Yb/Er, Yb/Ho) microspheres. , 2011, Langmuir : the ACS journal of surfaces and colloids.

[10]  R. Scheps Upconversion laser processes , 1996 .

[11]  Xiaogang Liu,et al.  Upconversion multicolor fine-tuning: visible to near-infrared emission from lanthanide-doped NaYF4 nanoparticles. , 2008, Journal of the American Chemical Society.

[12]  Dosi M. Dosev,et al.  Fluorescence upconversion in Sm-doped Gd2O3 , 2006 .

[13]  W. Cao,et al.  Investigation on upconversion photoluminescence of Bi3TiNbO9:Er3+:Yb3+ thin films , 2011 .

[14]  E. Rosa,et al.  Strong green upconversion emission in ZrO2:Yb3+–Ho3+ nanocrystals , 2005 .

[15]  Baosheng Cao,et al.  Optical temperature sensing behavior of enhanced green upconversion emissions from Er–Mo:Yb2Ti2O7 nanophosphor , 2011 .

[16]  A. Speghini,et al.  Concentration-Dependent Near-Infrared to Visible Upconversion in Nanocrystalline and Bulk Y2O3:Er3+ , 2003 .