Software for exact integration of polynomials over polyhedra

We are interested in the fast computation of the exact value of integrals of polynomial functions over convex polyhedra. We present speed-ups and extensions of the algorithms presented in previous work by some of the authors. We provide a new software implementation and benchmark computations. The computation of integrals of polynomials over polyhedral regions has many applications; here we demonstrate our algorithmic tools solving a challenge from combinatorial voting theory.

[1]  Michael Joswig,et al.  polymake: a Framework for Analyzing Convex Polytopes , 2000 .

[2]  S. Robins,et al.  Computing the Continuous Discretely: Integer-Point Enumeration in Polyhedra , 2007 .

[3]  Alexander Barvinok,et al.  Integer Points in Polyhedra , 2008 .

[4]  Jesús A. De Loera,et al.  Software for exact integration of polynomials over polyhedra , 2012, ACCA.

[5]  C. D. Boor,et al.  Polynomial interpolation in several variables , 1994 .

[6]  Huei Chuen Huang,et al.  Finding the exact volume of a polyhedron , 2003 .

[7]  Manuel Bronstein,et al.  Symbolic integration I: transcendental functions , 1997 .

[8]  L. Khachiyan Complexity of Polytope Volume Computation , 1993 .

[9]  Henry C. Thacher,et al.  Applied and Computational Complex Analysis. , 1988 .

[10]  Guillaume Hanrot,et al.  A long note on Mulders' short product , 2004, J. Symb. Comput..

[11]  Mark Korenblit,et al.  Algorithm and Software for Integration over a Convex Polyhedron , 2006, ICMS.

[12]  M. Brion Points entiers dans les polyèdres convexes , 1988 .

[13]  A. Barvinok,et al.  Short rational generating functions for lattice point problems , 2002, math/0211146.

[14]  Frank Sottile,et al.  (Formulas of Brion, Lawrence, and Varchenko on rational generating functions for cones) , 2009 .

[15]  Matthias Ko¨ppe A Primal Barvinok Algorithm Based on Irrational Decompositions , 2007 .

[16]  Komei Fukuda,et al.  Double Description Method Revisited , 1995, Combinatorics and Computer Science.

[17]  Jesús A. De Loera,et al.  How to integrate a polynomial over a simplex , 2008, Math. Comput..

[18]  Bingcheng Li The moment calculation of polyhedra , 1993, Pattern Recognit..

[19]  D. Avis A Revised Implementation of the Reverse Search Vertex Enumeration Algorithm , 2000 .

[20]  Jean B. Lasserre,et al.  An analytical expression and an algorithm for the volume of a convex polyhedron inRn , 1983 .

[21]  Ronald Cools,et al.  Algorithm 824: CUBPACK: a package for automatic cubature; framework description , 2003, TOMS.

[22]  Murray Schechter,et al.  INTEGRATION OVER A POLYHEDRON : AN APPLICATION OF THE FOURIER-MOTZKIN ELIMINATION METHOD , 1998 .

[23]  Nicole Berline,et al.  Local Euler-Maclaurin formula for polytopes , 2005, math/0507256.

[24]  Manuel Bronstein Symbolic Integration I: Transcendental Functions (Algorithms and Computation in Mathematics) , 2004 .

[25]  Achill Schürmann,et al.  Exploiting polyhedral symmetries in social choice , 2011, Soc. Choice Welf..

[26]  A. I. Barvinok Computation of exponential integrals , 1994 .

[27]  Martin E. Dyer,et al.  On the Complexity of Computing the Volume of a Polyhedron , 1988, SIAM J. Comput..

[28]  G. Brightwell,et al.  Counting linear extensions , 1991 .

[29]  Jacques Laskar,et al.  Development of TRIP: Fast Sparse Multivariate Polynomial Multiplication Using Burst Tries , 2006, International Conference on Computational Science.

[30]  Jesús A. De Loera,et al.  Effective lattice point counting in rational convex polytopes , 2004, J. Symb. Comput..

[31]  J. Lawrence Polytope volume computation , 1991 .

[32]  Komei Fukuda,et al.  Exact volume computation for polytopes: a practical study , 1996 .

[33]  G. Ottaviani,et al.  On the Alexander–Hirschowitz theorem , 2007, math/0701409.

[34]  Enrico Carlini,et al.  The Solution to Waring's Problem for Monomials , 2011, 1110.0745.

[35]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[36]  P. Henrici,et al.  Applied & computational complex analysis: power series integration conformal mapping location of zero , 1988 .

[37]  György Elekes,et al.  A geometric inequality and the complexity of computing volume , 1986, Discret. Comput. Geom..

[38]  A. Barvinok,et al.  An Algorithmic Theory of Lattice Points in Polyhedra , 1999 .

[39]  B. Sturmfels Gröbner bases and convex polytopes , 1995 .

[40]  Dominique Lepelley,et al.  On Ehrhart polynomials and probability calculations in voting theory , 2008, Soc. Choice Welf..

[41]  Luis Rademacher,et al.  Approximating the centroid is hard , 2007, SCG '07.

[42]  Brian Mirtich,et al.  Fast and Accurate Computation of Polyhedral Mass Properties , 1996, J. Graphics, GPU, & Game Tools.

[43]  Tomas Sauer,et al.  Polynomial interpolation in several variables , 2000, Adv. Comput. Math..

[44]  Manuel Bronstein,et al.  Symbolic Integration I , 1996 .