Finite Difference Techniques for Arbitrage Free SABR

This paper presents various finite difference schemes applied to the SABR arbitrage free density problem. Hagan initially proposed a Crank-Nicolson discretization, which can lead to oscillations in the option price. Among a variety of finite difference schemes, it is found that the TR-BDF2 and Lawson-Swayne schemes stand out on this problem in terms of stability and speed.

[1]  P. Hagan,et al.  MANAGING SMILE RISK , 2002 .

[2]  Jan Obloj,et al.  Fine-tune your smile: Correction to Hagan et al , 2007, 0708.0998.

[3]  Patrick S. Hagan,et al.  Arbitrage-Free SABR , 2014 .

[4]  D. Duffy A critique of the crank nicolson scheme strengths and weaknesses for financial instrument pricing , 2004 .

[5]  Bob Eisenberg,et al.  A conservative finite difference scheme for Poisson–Nernst–Planck equations , 2013, Journal of Computational Electronics.

[6]  M. Giles,et al.  Convergence analysis of Crank-Nicolson and Rannacher time-marching , 2006 .

[7]  K. Bathe,et al.  On a composite implicit time integration procedure for nonlinear dynamics , 2005 .

[8]  Alexandre Antonov,et al.  The Free Boundary SABR: Natural Extension to Negative Rates , 2015 .

[9]  Jim E. Morel,et al.  Nonlinear variants of the TR/BDF2 method for thermal radiative diffusion , 2011, J. Comput. Phys..

[10]  G. Strang,et al.  Optimal stability for trapezoidal–backward difference split-steps , 2010 .

[11]  Peter A. Forsyth,et al.  Convergence remedies for non-smooth payoffs in option pricing , 2003 .

[12]  Paul Doust No-arbitrage SABR , 2012 .

[13]  J. Lamperti A simple construction of certain diffusion processes , 1964 .

[14]  A. R. Gourlay,et al.  The Extrapolation of First Order Methods for Parabolic Partial Differential Equations, II , 1978 .

[15]  R. Rebonato,et al.  The nature of the dependence of the magnitude of rate moves on the rates levels: a universal relationship , 2013 .

[16]  Fabien Le Floc’h,et al.  TR-BDF2 for Stable American Option Pricing , 2010 .

[17]  Curt Randall,et al.  Pricing Financial Instruments: The Finite Difference Method , 2000 .

[18]  Louis Paulot,et al.  Asymptotic Implied Volatility at the Second Order with Application to the SABR Model , 2009, 0906.0658.

[19]  R. Rannacher Finite element solution of diffusion problems with irregular data , 1984 .

[20]  Fabien Le Floc’h TR-BDF2 for Stable American Option Pricing , 2010 .

[21]  K. W. Morton,et al.  Numerical Solution of Partial Differential Equations: An Introduction , 2005 .

[22]  Shalom Benaim,et al.  An arbitrage-free method for smile extrapolation , 2009 .

[23]  L. Richardson The Approximate Arithmetical Solution by Finite Differences of Physical Problems Involving Differential Equations, with an Application to the Stresses in a Masonry Dam , 1911 .

[24]  Randolph E. Bank,et al.  Transient simulation of silicon devices and circuits , 1985, IEEE Transactions on Electron Devices.

[25]  Arbitrage-Free Construction of the Swaption Cube , 2009 .

[26]  Alan G. White,et al.  A generalized procedure for building trees for the short rate and its application to determining market implied volatility functions , 2014 .

[27]  JAN OB LÓJ FINE-TUNE YOUR SMILE CORRECTION TO HAGAN ET AL , 2008 .

[28]  A generalized procedure for building trees for the short rate and its application to determining market implied volatility functions , 2015 .

[29]  Douglas T. Breeden,et al.  Prices of State-Contingent Claims Implicit in Option Prices , 1978 .

[30]  Jesper Andreasen,et al.  ZABR -- Expansions for the Masses , 2011 .