Analysis and design of novel electromagnetic metamaterials

This thesis introduces efficient numerical techniques for the analysis of novel electromagnetic metamaterials. The modelling is based on a Method of Moments modal analysis in conjunction with an interpolation scheme, which significantly accelerates the computations. Triangular basis functions are used that allow for modelling of arbitrary shaped metallic elements. Unlike the conventional methods, impedance interpolation is applied to derive the dispersion characteristics of planar periodic structures. With these techniques, the plane wave and the surface wave responses of fractal structures have been studied by means of transmission coefficients and dispersion diagrams. The multiband properties and the compactness of the proposed structures are presented. Based on this method, novel planar left-handed metamaterials are also proposed. Verifications of the left-handedness are presented by means of full wave simulation of finite planar arrays using commercial software and lab measurement. The structures are simple, readily scalable to higher frequencies and compatible with low-cost fabrication techniques.