Reciprocity between local moments and collective magnetic excitations in the phase diagram of BaFe2(As1−xPx)2

[1]  A. P. Sorini,et al.  Evidence for weak electronic correlations in iron pnictides , 2020 .

[2]  L. Das,et al.  Anisotropic magnetic excitations and incipient Néel order in Ba(Fe1−xMnx)2As2 , 2019, Physical Review B.

[3]  N. Brookes,et al.  Paramagnon dispersion in β -FeSe observed by Fe L -edge resonant inelastic x-ray scattering , 2018, Physical Review B.

[4]  D. Basov,et al.  Intrinsic Charge Dynamics in High-T_{c} AFeAs(O,F) Superconductors. , 2018, Physical review letters.

[5]  G. Kotliar,et al.  Spin excitations in optimally P-doped BaFe , 2018 .

[6]  C. Mazzoli,et al.  Spin and charge excitations in artificial hole- and electron-doped infinite layer cuprate superconductors , 2017 .

[7]  T. Schmitt,et al.  Local and collective magnetism of EuFe 2 As 2 , 2017 .

[8]  T. Schmitt,et al.  Magnetic moment evolution and spin freezing in doped BaFe2As2 , 2016, Scientific Reports.

[9]  T. Schmitt,et al.  Presence of magnetic excitations in SmFeAsO , 2016, 1611.03620.

[10]  P. Glatzel,et al.  Evidence of Mott physics in iron pnictides from x-ray spectroscopy , 2016, 1607.07417.

[11]  H. Löhneysen,et al.  Strain-Driven Approach to Quantum Criticality in AFe_{2}As_{2} with A=K, Rb, and Cs. , 2016, Physical review letters.

[12]  K. Shimizu,et al.  Origin of Pressure-induced Superconducting Phase in KxFe2−ySe2 studied by Synchrotron X-ray Diffraction and Spectroscopy , 2016, Scientific Reports.

[13]  T. Schmitt,et al.  Intralayer doping effects on the high-energy magnetic correlations in NaFeAs , 2016, 1611.03621.

[14]  K. Wohlfeld,et al.  Using RIXS to uncover elementary charge and spin excitations , 2015, 1510.05068.

[15]  D. Inosov Spin fluctuations in iron pnictides and chalcogenides: From antiferromagnetism to superconductivity , 2015, 1502.06570.

[16]  C. Matt Electron Correlation in Copper and Iron-Based High Temperature Superconductors - An Angle-Resolved Photoemission Spectroscopy Perspective , 2016 .

[17]  A. Chubukov Itinerant electron scenario for Fe-based superconductors , 2015, 1507.03856.

[18]  T. Tohyama,et al.  Enhanced charge excitations in electron-doped cuprates by resonant inelastic x-ray scattering , 2015, 1503.04259.

[19]  P. Dai Antiferromagnetic order and spin dynamics in iron-based superconductors , 2015, 1503.02340.

[20]  J. van den Brink,et al.  Anisotropic softening of magnetic excitations along the nodal direction in superconducting cuprates , 2014, Nature Communications.

[21]  N. Mannella The magnetic moment enigma in Fe-based high temperature superconductors , 2014, Journal of physics. Condensed matter : an Institute of Physics journal.

[22]  M. Kanatzidis,et al.  Coincident structural and magnetic order in BaFe 2 ( As 1 − x P x ) 2 revealed by high-resolution neutron diffraction , 2014, 1410.2630.

[23]  E. Giannini,et al.  Itinerant effects and enhanced magnetic interactions in Bi-based multilayer cuprates , 2014, 1409.2053.

[24]  A. Bansil,et al.  Intermediate coupling model of the cuprates , 2014, 1407.5722.

[25]  C. Mazzoli,et al.  High-energy spin and charge excitations in electron-doped copper oxide superconductors , 2014, Nature Communications.

[26]  T. Schmitt,et al.  Asymmetry of collective excitations in electron- and hole-doped cuprate superconductors , 2013, Nature Physics.

[27]  T. Shibauchi,et al.  A Quantum Critical Point Lying Beneath the Superconducting Dome in Iron Pnictides , 2013, 1304.6387.

[28]  J. Tranquada,et al.  Superconductivity, antiferromagnetism, and neutron scattering , 2013, 1301.5888.

[29]  Meng Wang,et al.  Doping dependence of spin excitations and its correlations with high-temperature superconductivity in iron pnictides , 2013, Nature Communications.

[30]  Huiqian Luo,et al.  Electron doping evolution of the magnetic excitations in BaFe2-xNixAs2 , 2013, 1310.2333.

[31]  N. Brookes,et al.  Persistence of magnetic excitations in La(2-x)Sr(x)CuO4 from the undoped insulator to the heavily overdoped non-superconducting metal. , 2013, Nature materials.

[32]  J. van den Brink,et al.  Persistent high-energy spin excitations in iron-pnictide superconductors , 2013, Nature Communications.

[33]  D. Casa,et al.  Spin-state transition in the Fe pnictides. , 2012, Physical review letters.

[34]  T. Das,et al.  Origin of pressure induced second superconducting dome in Ay Fe2−xSe2 [A = K, (Tl,Rb)] , 2012, 1208.2468.

[35]  E. Dagotto,et al.  Magnetism and its microscopic origin in iron-based high-temperature superconductors , 2012, Nature Physics.

[36]  D. Scalapino A common thread: The pairing interaction for unconventional superconductors , 2012, 1207.4093.

[37]  A. Sefat,et al.  Itinerant electrons, local moments, and magnetic correlations in the pnictide superconductors CeFeAsO 1-x F x and Sr(Fe 1-x Co x ) 2 As 2 , 2012 .

[38]  Takashi Takahashi,et al.  Fe-based superconductors: an angle-resolved photoemission spectroscopy perspective , 2011, 1110.6751.

[39]  A. Chubukov Pairing mechanism in Fe-based superconductors , 2011, 1110.0052.

[40]  K. H. Kim,et al.  Revealing the Dual Nature of Magnetism in Iron Pnictides and Iron Chalcogenides Using X-ray Emission Spectroscopy , 2011, 1107.2211.

[41]  T. Schmitt,et al.  Intense paramagnon excitations in a large family of high-temperature superconductors , 2011, 1106.2641.

[42]  G. Stewart Superconductivity in iron compounds , 2011, 1106.1618.

[43]  T. Tohyama,et al.  Spin and orbital characters of excitations in iron arsenide superconductors revealed by simulated resonant inelastic x-ray scattering , 2011, 1104.5424.

[44]  G. Kotliar,et al.  Kinetic frustration and the nature of the magnetic and paramagnetic states in iron pnictides and iron chalcogenides. , 2011, Nature materials.

[45]  T. Shibauchi,et al.  Nesting of electron and hole Fermi surfaces in nonsuperconducting BaFe2P2 , 2011, 1104.0150.

[46]  Jeroen van den Brink,et al.  Resonant Inelastic X-ray Scattering Studies of Elementary Excitations , 2010, 1009.3630.

[47]  D. Johnston,et al.  The puzzle of high temperature superconductivity in layered iron pnictides and chalcogenides , 2010, 1005.4392.

[48]  T. Schmitt,et al.  Evidence for core-hole-mediated inelastic x-ray scattering from metallic Fe1.087Te , 2010, 1004.3759.

[49]  M. Lumsden,et al.  Magnetism in Fe-based superconductors , 2010, Journal of physics. Condensed matter : an Institute of Physics journal.

[50]  J. Chu,et al.  Enhanced Fermi-surface nesting in superconducting BaFe2(As(1-x)P(x))2 revealed by the de Haas-van Alphen effect. , 2010, Physical review letters.

[51]  A. Piazzalunga,et al.  Synchrotron Radiation High-resolution Soft X-ray Beamline Adress at the Swiss Light Source for Resonant Inelastic X-ray Scattering and Angle-resolved Photoelectron Spectroscopies , 2022 .

[52]  K. Hashimoto,et al.  Synthesis and characterization of (Ba, Sr)Fe2(As, P)2 iron pnictide superconductors , 2009, 0905.4427.

[53]  D. J. Scalapino,et al.  Near-degeneracy of several pairing channels in multiorbital models for the Fe pnictides , 2008, 0812.0343.

[54]  X. Dai,et al.  Orbital-selective Mott transition out of band degeneracy lifting. , 2008, Physical review letters.

[55]  Luc Patthey,et al.  SAXES, a high resolution spectrometer for resonant x-ray emission in the 400-1600 eV energy range , 2006 .

[56]  A. Shukla,et al.  Probing the 3d spin momentum with X-ray emission spectroscopy: the case of molecular-spin transitions. , 2006, The journal of physical chemistry. B.

[57]  Uwe Bergmann,et al.  High resolution 1s core hole X-ray spectroscopy in 3d transition metal complexes—electronic and structural information , 2005 .

[58]  N. Nagaosa,et al.  Doping a Mott insulator: Physics of high-temperature superconductivity , 2004, cond-mat/0410445.