An Expanded View of Complex Traits: From Polygenic to Omnigenic

[1]  Gerome Breen,et al.  Psychiatric Genomics: An Update and an Agenda , 2017, bioRxiv.

[2]  Stephen Burgess,et al.  Consequences of natural perturbations in the human plasma proteome , 2017, bioRxiv.

[3]  Wei Cheng,et al.  Contribution of copy number variants to schizophrenia from a genome-wide study of 41,321 subjects , 2016, Nature Genetics.

[4]  Abhijeet R. Sonawane,et al.  Understanding Tissue-Specific Gene Regulation , 2017, bioRxiv.

[5]  Nikolaos A Patsopoulos,et al.  Limited statistical evidence for shared genetic effects of eQTLs and autoimmune disease-associated loci in three major immune cell types , 2017, Nature Genetics.

[6]  M. Rienstra,et al.  Letter to editor: Reply on question of Marques JR et al. regarding the paper entitled: "The LifeLines cohort study: Prevalence and treatment of cardiovascular disease and risk factors". , 2019, International journal of cardiology.

[7]  Kaur Alasoo,et al.  Genetic effects on chromatin accessibility foreshadow gene expression changes in macrophage immune response , 2017, bioRxiv.

[8]  Marcelo P. Segura-Lepe,et al.  Rare and low-frequency coding variants alter human adult height , 2016, Nature.

[9]  Jakob Grove,et al.  Polygenic transmission disequilibrium confirms that common and rare variation act additively to create risk for autism spectrum disorders , 2016, Nature Genetics.

[10]  Len A. Pennacchio,et al.  Enhancer Variants Synergistically Drive Dysfunction of a Gene Regulatory Network In Hirschsprung Disease , 2016, Cell.

[11]  Eleazar Eskin,et al.  Distant regulatory effects of genetic variation in multiple human tissues , 2016, bioRxiv.

[12]  B. Pasaniuc,et al.  Contrasting the genetic architecture of 30 complex traits from summary association data , 2016, bioRxiv.

[13]  P. Visscher,et al.  A plethora of pleiotropy across complex traits , 2016, Nature Genetics.

[14]  Steven P. Gygi,et al.  Defining the consequences of genetic variation on a proteome-wide scale , 2016, Nature.

[15]  A. Chakravarti,et al.  Revealing rate‐limiting steps in complex disease biology: The crucial importance of studying rare, extreme‐phenotype families , 2016, BioEssays : news and reviews in molecular, cellular and developmental biology.

[16]  Joseph K. Pickrell,et al.  Detection and interpretation of shared genetic influences on 42 human traits , 2015, Nature Genetics.

[17]  Kyle J. Gaulton,et al.  Detection of human adaptation during the past 2000 years , 2016, Science.

[18]  David A. Knowles,et al.  RNA splicing is a primary link between genetic variation and disease , 2016, Science.

[19]  C. Spencer,et al.  A contribution of novel CNVs to schizophrenia from a genome-wide study of 41,321 subjects: CNV Analysis Group and the Schizophrenia Working Group of the Psychiatric Genomics Consortium , 2016, bioRxiv.

[20]  N. Barton,et al.  The infinitesimal model , 2016, bioRxiv.

[21]  Matthew Stephens,et al.  False discovery rates: a new deal , 2016, bioRxiv.

[22]  Giulio Genovese,et al.  Schizophrenia risk from complex variation of complement component 4 , 2016, Nature.

[23]  Yakir A Reshef,et al.  Partitioning heritability by functional annotation using genome-wide association summary statistics , 2015, Nature Genetics.

[24]  Manolis Kellis,et al.  FTO Obesity Variant Circuitry and Adipocyte Browning in Humans. , 2015, The New England journal of medicine.

[25]  G. Kempermann Faculty Opinions recommendation of Human genomics. The Genotype-Tissue Expression (GTEx) pilot analysis: multitissue gene regulation in humans. , 2015 .

[26]  Jun S. Liu,et al.  The Genotype-Tissue Expression (GTEx) pilot analysis: Multitissue gene regulation in humans , 2015, Science.

[27]  Kali T. Witherspoon,et al.  Excess of rare, inherited truncating mutations in autism , 2015, Nature Genetics.

[28]  M. Daly,et al.  An Atlas of Genetic Correlations across Human Diseases and Traits , 2015, Nature Genetics.

[29]  N. Wray,et al.  Contrasting genetic architectures of schizophrenia and other complex diseases using fast variance components analysis , 2015, Nature Genetics.

[30]  Ross M. Fraser,et al.  Genetic studies of body mass index yield new insights for obesity biology , 2015, Nature.

[31]  Alexis Battle,et al.  Impact of regulatory variation from RNA to protein , 2015, Science.

[32]  Michael Q. Zhang,et al.  Integrative analysis of 111 reference human epigenomes , 2015, Nature.

[33]  M. Daly,et al.  Genetic and Epigenetic Fine-Mapping of Causal Autoimmune Disease Variants , 2014, Nature.

[34]  M. Daly,et al.  LD Score regression distinguishes confounding from polygenicity in genome-wide association studies , 2014, Nature Genetics.

[35]  Benjamin M. Neale,et al.  Genetic Consortium for Anorexia Nervosa of the Wellcome Trust Case Control Consortium , 2015 .

[36]  Christopher S. Poultney,et al.  Synaptic, transcriptional, and chromatin genes disrupted in autism , 2014, Nature.

[37]  Ross M. Fraser,et al.  Defining the role of common variation in the genomic and biological architecture of adult human height , 2014, Nature Genetics.

[38]  C. Spencer,et al.  Biological Insights From 108 Schizophrenia-Associated Genetic Loci , 2014, Nature.

[39]  G. Davey Smith,et al.  Mendelian randomization: genetic anchors for causal inference in epidemiological studies , 2014, Human molecular genetics.

[40]  N. Cox,et al.  Obesity-associated variants within FTO form long-range functional connections with IRX3 , 2014, Nature.

[41]  Eric S. Lander,et al.  A polygenic burden of rare disruptive mutations in schizophrenia , 2014, Nature.

[42]  E. Banks,et al.  De novo mutations in schizophrenia implicate synaptic networks , 2014, Nature.

[43]  Peggy Hall,et al.  The NHGRI GWAS Catalog, a curated resource of SNP-trait associations , 2013, Nucleic Acids Res..

[44]  Joseph K. Pickrell Joint analysis of functional genomic data and genome-wide association studies of 18 human traits , 2013, bioRxiv.

[45]  J. Pritchard,et al.  The deleterious mutation load is insensitive to recent population history , 2013, Nature Genetics.

[46]  Sharon R Grossman,et al.  Detecting natural selection in genomic data. , 2013, Annual review of genetics.

[47]  M. Peters,et al.  Systematic identification of trans eQTLs as putative drivers of known disease associations , 2013, Nature Genetics.

[48]  L. Furlong Human diseases through the lens of network biology. , 2013, Trends in genetics : TIG.

[49]  Greg Gibson,et al.  Blood-Informative Transcripts Define Nine Common Axes of Peripheral Blood Gene Expression , 2013, PLoS genetics.

[50]  Buhm Han,et al.  Chromatin marks identify critical cell types for fine mapping complex trait variants , 2012 .

[51]  David C. Wilson,et al.  Host-microbe interactions have shaped the genetic architecture of inflammatory bowel disease , 2012, Nature.

[52]  Shane J. Neph,et al.  Systematic Localization of Common Disease-Associated Variation in Regulatory DNA , 2012, Science.

[53]  A. Butte,et al.  Leveraging models of cell regulation and GWAS data in integrative network-based association studies , 2012, Nature Genetics.

[54]  Cameron D. Palmer,et al.  Evidence of widespread selection on standing variation in Europe at height-associated SNPs , 2012, Nature Genetics.

[55]  Kasper Lage,et al.  Pervasive Sharing of Genetic Effects in Autoimmune Disease , 2011, PLoS genetics.

[56]  G. Wagner,et al.  The pleiotropic structure of the genotype–phenotype map: the evolvability of complex organisms , 2011, Nature Reviews Genetics.

[57]  Alkes L. Price,et al.  Single-Tissue and Cross-Tissue Heritability of Gene Expression Via Identity-by-Descent in Related or Unrelated Individuals , 2011, PLoS genetics.

[58]  M. Daly,et al.  Integrating Autoimmune Risk Loci with Gene-Expression Data Identifies Specific Pathogenic Immune Cell Subsets. , 2011, American journal of human genetics.

[59]  E. Davidson Emerging properties of animal gene regulatory networks , 2010, Nature.

[60]  P. Visscher,et al.  Common SNPs explain a large proportion of heritability for human height , 2011 .

[61]  Joseph K. Pickrell,et al.  The Genetics of Human Adaptation: Hard Sweeps, Soft Sweeps, and Polygenic Adaptation , 2010, Current Biology.

[62]  D. Goldstein Common genetic variation and human traits. , 2009, The New England journal of medicine.

[63]  B. Walsh,et al.  Abundant Genetic Variation + Strong Selection = Multivariate Genetic Constraints: A Geometric View of Adaptation , 2009 .

[64]  Judy H. Cho,et al.  Finding the missing heritability of complex diseases , 2009, Nature.

[65]  P. Visscher,et al.  Common polygenic variation contributes to risk of schizophrenia and bipolar disorder , 2009, Nature.

[66]  Manuel A. R. Ferreira,et al.  Assumption-Free Estimation of Heritability from Genome-Wide Identity-by-Descent Sharing between Full Siblings , 2006, PLoS genetics.

[67]  M. Olivier A haplotype map of the human genome. , 2003, Nature.

[68]  M. Olivier A haplotype map of the human genome , 2003, Nature.

[69]  D. Botstein,et al.  Discovering genotypes underlying human phenotypes: past successes for mendelian disease, future approaches for complex disease , 2003, Nature Genetics.

[70]  S. Strogatz Exploring complex networks , 2001, Nature.

[71]  Courtney A. Harper,et al.  A genomic screen of autism: evidence for a multilocus etiology. , 1999, American journal of human genetics.

[72]  Duncan J. Watts,et al.  Collective dynamics of ‘small-world’ networks , 1998, Nature.

[73]  R. Suzman,et al.  An Overview of the Health and Retirement Study , 1995 .

[74]  N. Barton,et al.  Pleiotropic models of quantitative variation. , 1990, Genetics.

[75]  R. Fisher XV.—The Correlation between Relatives on the Supposition of Mendelian Inheritance. , 1919, Transactions of the Royal Society of Edinburgh.

[76]  L. Penrose,et al.  THE CORRELATION BETWEEN RELATIVES ON THE SUPPOSITION OF MENDELIAN INHERITANCE , 2022 .