Flipping to Robustly Delete a Vertex in a Delaunay Tetrahedralization

We discuss the deletion of a single vertex in a Delaunay tetrahedralization (DT). While some theoretical solutions exist for this problem, the many degeneracies in three dimensions make them impossible to be implemented without the use of extra mechanisms. In this paper, we present an algorithm that uses a sequence of bistellar flips to delete a vertex in a DT, and we present two different mechanisms to ensure its robustness.

[1]  Jonathan Richard Shewchuk,et al.  Updating and constructing constrained delaunay and constrained regular triangulations by flips , 2003, SCG '03.

[2]  L. Chew Building Voronoi Diagrams for Convex Polygons in Linear Expected Time , 1990 .

[3]  E. Schönhardt,et al.  Über die Zerlegung von Dreieckspolyedern in Tetraeder , 1928 .

[4]  V. T. Rajan Optimality of the Delaunay triangulation in ℝd , 1994, Discret. Comput. Geom..

[5]  V. T. Rajan,et al.  Optimality of the Delaunay triangulation in Rd , 1991, SCG '91.

[6]  Jonathan Richard Shewchuk,et al.  Sweep algorithms for constructing higher-dimensional constrained Delaunay triangulations , 2000, SCG '00.

[7]  B. Joe Three-dimensional triangulations from local transformations , 1989 .

[8]  Raimund Seidel,et al.  The Nature and Meaning of Perturbations in Geometric Computing , 1994, STACS.

[9]  P Cignoni,et al.  DeWall: A fast divide and conquer Delaunay triangulation algorithm in Ed , 1998, Comput. Aided Des..

[10]  Olivier Devillers On Deletion in Delaunay Triangulations , 2002, Int. J. Comput. Geom. Appl..

[11]  D. F. Watson Computing the n-Dimensional Delaunay Tesselation with Application to Voronoi Polytopes , 1981, Comput. J..

[12]  Raimund Seidel,et al.  Voronoi diagrams and arrangements , 1986, Discret. Comput. Geom..

[13]  Paolo Cignoni,et al.  DeWall : A Fast Divide & Conquer Delaunay Triangulation Algorithm in E d , 1997 .

[14]  Charles L. Lawson,et al.  Properties of n-dimensional triangulations , 1986, Comput. Aided Geom. Des..

[15]  Herbert Edelsbrunner,et al.  Simulation of simplicity: a technique to cope with degenerate cases in geometric algorithms , 1988, SCG '88.

[16]  Barry Joe,et al.  Construction of three-dimensional Delaunay triangulations using local transformations , 1991, Comput. Aided Geom. Des..

[17]  Olivier Devillers,et al.  Perturbations and vertex removal in a 3D delaunay triangulation , 2003, SODA '03.

[18]  C. Gold,et al.  Delete and insert operations in Voronoi/Delaunay methods and applications , 2003 .