Integration of Explainable AI and Blockchain for Secure Storage of Human Readable Justifications for Credit Risk Assessment

[1]  Franco Turini,et al.  A Survey of Methods for Explaining Black Box Models , 2018, ACM Comput. Surv..

[2]  Alexander Binder,et al.  Explaining nonlinear classification decisions with deep Taylor decomposition , 2015, Pattern Recognit..

[3]  José Luis Navarro,et al.  A fuzzy clustering algorithm enhancing local model interpretability , 2007, Soft Comput..

[4]  Avanti Shrikumar,et al.  Learning Important Features Through Propagating Activation Differences , 2017, ICML.

[5]  Paolo Giudici,et al.  Explainable Machine Learning in Credit Risk Management , 2019, Computational Economics.

[6]  Gerald Fahner,et al.  Developing Transparent Credit Risk Scorecards More Effectively: An Explainable Artificial Intelligence Approach , 2018 .

[7]  Vinod Sharma,et al.  An interpretable neuro-fuzzy approach to stock price forecasting , 2017, Soft Computing.

[8]  Alexander Binder,et al.  On Pixel-Wise Explanations for Non-Linear Classifier Decisions by Layer-Wise Relevance Propagation , 2015, PloS one.

[9]  Francisco Herrera,et al.  Explainable Artificial Intelligence (XAI): Concepts, Taxonomies, Opportunities and Challenges toward Responsible AI , 2020, Inf. Fusion.

[10]  M. Stone Cross‐Validatory Choice and Assessment of Statistical Predictions , 1976 .

[11]  Fran Casino,et al.  A systematic literature review of blockchain-based applications: Current status, classification and open issues , 2019, Telematics Informatics.

[12]  Gaël Varoquaux,et al.  Scikit-learn: Machine Learning in Python , 2011, J. Mach. Learn. Res..

[13]  Sameer Singh,et al.  “Why Should I Trust You?”: Explaining the Predictions of Any Classifier , 2016, NAACL.

[15]  Lalana Kagal,et al.  Explaining Explanations: An Overview of Interpretability of Machine Learning , 2018, 2018 IEEE 5th International Conference on Data Science and Advanced Analytics (DSAA).

[16]  Enrico Bertini,et al.  ViCE: visual counterfactual explanations for machine learning models , 2020, IUI.

[17]  Martin Wattenberg,et al.  How to Use t-SNE Effectively , 2016 .

[18]  L. Shapley A Value for n-person Games , 1988 .

[19]  Ankur Taly,et al.  Gradients of Counterfactuals , 2016, ArXiv.

[20]  Cynthia Rudin,et al.  An Interpretable Model with Globally Consistent Explanations for Credit Risk , 2018, ArXiv.

[21]  Amina Adadi,et al.  Peeking Inside the Black-Box: A Survey on Explainable Artificial Intelligence (XAI) , 2018, IEEE Access.

[22]  David J. Hand,et al.  Measuring classifier performance: a coherent alternative to the area under the ROC curve , 2009, Machine Learning.

[23]  Keun Ho Ryu,et al.  Advanced Neural Network Approach, Its Explanation with LIME for Credit Scoring Application , 2019, ACIIDS.

[24]  Jimeng Sun,et al.  RETAIN: An Interpretable Predictive Model for Healthcare using Reverse Time Attention Mechanism , 2016, NIPS.

[25]  Khaled Salah,et al.  Blockchain for explainable and trustworthy artificial intelligence , 2019, WIREs Data Mining Knowl. Discov..

[26]  Carl Doersch,et al.  Tutorial on Variational Autoencoders , 2016, ArXiv.

[27]  Carlos Guestrin,et al.  Anchors: High-Precision Model-Agnostic Explanations , 2018, AAAI.