Correlating the Reverse Water–Gas Shift Reaction with Surface Chemistry: The Influence of Reactant Gas Exposure to Ni(100)

[1]  E. Crumlin,et al.  CO2 Activation on Ni(111) and Ni(100) Surfaces in the Presence of H2O: An Ambient-Pressure X-ray Photoelectron Spectroscopy Study , 2019, The Journal of Physical Chemistry C.

[2]  K. Daasbjerg,et al.  Chemically and electrochemically catalysed conversion of CO2 to CO with follow-up utilization to value-added chemicals , 2018, Nature Catalysis.

[3]  G. Schatz,et al.  Mechanisms of Hydrogen-Assisted CO2 Reduction on Nickel. , 2017, Journal of the American Chemical Society.

[4]  Ping Liu,et al.  Active sites for CO2 hydrogenation to methanol on Cu/ZnO catalysts , 2017, Science.

[5]  C. Wu,et al.  Ambient-Pressure X-ray Photoelectron Spectroscopy Study of Cobalt Foil Model Catalyst under CO, H2, and Their Mixtures , 2017 .

[6]  Jin-Xun Liu,et al.  CO Dissociation on Face-Centered Cubic and Hexagonal Close-Packed Nickel Catalysts: A First-Principles Study , 2016 .

[7]  M. Salmeron,et al.  Recycling of CO2: Probing the Chemical State of the Ni(111) Surface during the Methanation Reaction with Ambient-Pressure X-Ray Photoelectron Spectroscopy. , 2016, Journal of the American Chemical Society.

[8]  R. Schlögl,et al.  Reverse Water-Gas Shift or Sabatier Methanation on Ni(110)? Stable Surface Species at Near-Ambient Pressure. , 2016, Journal of the American Chemical Society.

[9]  Ping Liu,et al.  Hydrogenation of CO2 to Methanol: Importance of Metal–Oxide and Metal–Carbide Interfaces in the Activation of CO2 , 2015 .

[10]  M. Maestri,et al.  Mechanistic Insights into CO2 Activation via Reverse Water–Gas Shift on Metal Surfaces , 2015 .

[11]  Avishek Ghosh,et al.  Effects of Gas Feed Ratios and Sequence on Ethylene Hydrogenation on Powder Pt Catalyst Studied by Sum Frequency Generation and Mass Spectrometry , 2014 .

[12]  Xiao-Ming Cao,et al.  Activity and coke formation of nickel and nickel carbide in dry reforming: A deactivation scheme from density functional theory , 2014 .

[13]  D. Cheng,et al.  Computational approaches to the chemical conversion of carbon dioxide. , 2013, ChemSusChem.

[14]  R. Behm,et al.  TAP reactor studies of the oxidizing capability of CO2 on a Au/CeO2 catalyst – A first step toward identifying a redox mechanism in the Reverse Water–Gas Shift reaction , 2013 .

[15]  Christoph Kern,et al.  Production of Liquid Hydrocarbons with CO2 as Carbon Source based on Reverse Water-Gas Shift and Fischer-Tropsch Synthesis† , 2013 .

[16]  Sui‐Dong Wang,et al.  In-situ photoelectron spectroscopy with online activity measurement for catalysis research , 2012 .

[17]  Y. Kousa,et al.  In situ ambient pressure XPS study of CO oxidation reaction on Pd(111) surfaces , 2012 .

[18]  Wei Wang,et al.  Recent advances in catalytic hydrogenation of carbon dioxide. , 2011, Chemical Society reviews.

[19]  N. Kruse,et al.  Catalytic CO2 Hydrogenation on Nickel: Novel Insight by Chemical Transient Kinetics† , 2011 .

[20]  Z. Hussain,et al.  New ambient pressure photoemission endstation at Advanced Light Source beamline 9.3.2. , 2010, The Review of scientific instruments.

[21]  A. Baldereschi,et al.  Hydrogen-Assisted Transformation of CO2 on Nickel: The Role of Formate and Carbon Monoxide , 2010 .

[22]  Wei Wei,et al.  A short review of catalysis for CO2 conversion , 2009 .

[23]  A. Baldereschi,et al.  Carbon dioxide hydrogenation on Ni(110). , 2008, Journal of the American Chemical Society.

[24]  M. Salmeron Ambient pressure photoelectron spectroscopy: a new tool for surface science and nanotechnology , 2008 .

[25]  Shengguang Wang,et al.  Chemisorption of CO2 on nickel surfaces. , 2005, The journal of physical chemistry. B.

[26]  D. Sholl,et al.  Chemisorption and diffusion of hydrogen on surface and subsurface sites of flat and stepped nickel surfaces. , 2005, The Journal of chemical physics.

[27]  P. Szabelski,et al.  Hydrogen adsorption on nickel (100) single-crystal face. A Monte Carlo study of the equilibrium and kinetics. , 2005, The journal of physical chemistry. B.

[28]  Søren Dahl,et al.  Methanation of CO over nickel: Mechanism and kinetics at high H2/CO ratios. , 2005, The journal of physical chemistry. B.

[29]  John F. O'Hanlon,et al.  A User's Guide to Vacuum Technology: O'Hanlon/Vacuum Technology 3e , 2004 .

[30]  G. Froment,et al.  Steam/CO2 Reforming of Methane. Carbon Filament Formation by the Boudouard Reaction and Gasification by CO2, by H2, and by Steam: Kinetic Study , 2002 .

[31]  S T Ceyer,et al.  The unique chemistry of hydrogen beneath the surface: catalytic hydrogenation of hydrocarbons. , 2001, Accounts of chemical research.

[32]  P. Sautet,et al.  Heterogeneous Catalysis through Subsurface Sites , 2000 .

[33]  Shin-ichiro Fujita,et al.  Mechanism of the reverse water gas shift reaction over Cu/ZnO catalyst , 1992 .

[34]  A. Hamza,et al.  Dynamics of the dissociative adsorption of hydrogen on nickel(100) , 1985 .

[35]  D. Goodman,et al.  Methanation of carbon dioxide on Ni(100) and the effects of surface modifiers , 1983 .

[36]  G. Weatherbee Hydrogenation of CO2 on group VIII metals: II. Kinetics and mechanism of CO2 hydrogenation on nickel , 1982 .

[37]  R. Kelley,et al.  Measurement of carbide buildup and removal kinetics on Ni(100) , 1980 .

[38]  J. Benziger,et al.  The decomposition of formic acid on Ni(100) , 1979 .

[39]  G. Ertl,et al.  Adsorption of hydrogen on nickel single crystal surfaces , 1974 .