Parallel Epidemics of Community-Associated Methicillin-Resistant Staphylococcus aureus USA300 Infection in North and South America.

BACKGROUND The community-associated methicillin-resistant Staphylococcus aureus (CA-MRSA) epidemic in the United States is attributed to the spread of the USA300 clone. An epidemic of CA-MRSA closely related to USA300 has occurred in northern South America (USA300 Latin-American variant, USA300-LV). Using phylogenomic analysis, we aimed to understand the relationships between these 2 epidemics. METHODS We sequenced the genomes of 51 MRSA clinical isolates collected between 1999 and 2012 from the United States, Colombia, Venezuela, and Ecuador. Phylogenetic analysis was used to infer the relationships and times since the divergence of the major clades. RESULTS Phylogenetic analyses revealed 2 dominant clades that segregated by geographical region, had a putative common ancestor in 1975, and originated in 1989, in North America, and in 1985, in South America. Emergence of these parallel epidemics coincides with the independent acquisition of the arginine catabolic mobile element (ACME) in North American isolates and a novel copper and mercury resistance (COMER) mobile element in South American isolates. CONCLUSIONS Our results reveal the existence of 2 parallel USA300 epidemics that shared a recent common ancestor. The simultaneous rapid dissemination of these 2 epidemic clades suggests the presence of shared, potentially convergent adaptations that enhance fitness and ability to spread.

[1]  R. Sebra,et al.  Evolution of hypervirulence by a MRSA clone through acquisition of a transposable element , 2014, Molecular microbiology.

[2]  Julian Parkhill,et al.  Molecular tracing of the emergence, diversification, and transmission of S. aureus sequence type 8 in a New York community , 2014, Proceedings of the National Academy of Sciences.

[3]  A. Wollam,et al.  Transferable vancomycin resistance in a community-associated MRSA lineage. , 2014, The New England journal of medicine.

[4]  A. Prince,et al.  Emergence of the Epidemic Methicillin-Resistant Staphylococcus aureus Strain USA300 Coincides with Horizontal Transfer of the Arginine Catabolic Mobile Element and speG-mediated Adaptations for Survival on Skin , 2013, mBio.

[5]  A. Leal,et al.  Molecular epidemiology and characterization of virulence genes of community-acquired and hospital-acquired methicillin-resistant Staphylococcus aureus isolates in Colombia. , 2013, International journal of infectious diseases : IJID : official publication of the International Society for Infectious Diseases.

[6]  D. Coleman,et al.  Staphylococcal cassette chromosome mec: recent advances and new insights. , 2013, International journal of medical microbiology : IJMM.

[7]  Aaron A. Klammer,et al.  Nonhybrid, finished microbial genome assemblies from long-read SMRT sequencing data , 2013, Nature Methods.

[8]  L. Thurlow,et al.  Functional modularity of the arginine catabolic mobile element contributes to the success of USA300 methicillin-resistant Staphylococcus aureus. , 2013, Cell host & microbe.

[9]  F. Lowy,et al.  Toward an Understanding of the Evolution of Staphylococcus aureus Strain USA300 during Colonization in Community Households , 2012, Genome biology and evolution.

[10]  D. Thiele,et al.  Copper at the Front Line of the Host-Pathogen Battle , 2012, PLoS pathogens.

[11]  E. A. Rodríguez,et al.  CC8 MRSA Strains Harboring SCCmec Type IVc are Predominant in Colombian Hospitals , 2012, PloS one.

[12]  A. Richardson,et al.  Arginine catabolic mobile element encoded speG abrogates the unique hypersensitivity of Staphylococcus aureus to exogenous polyamines , 2011, Molecular microbiology.

[13]  J. Morrissey,et al.  The Staphylococcus aureus CsoR regulates both chromosomal and plasmid-encoded copper resistance mechanisms. , 2011, Environmental microbiology.

[14]  B. Limbago,et al.  Comparison of Staphylococcus aureus from skin and soft-tissue infections in US emergency department patients, 2004 and 2008. , 2011, Clinical infectious diseases : an official publication of the Infectious Diseases Society of America.

[15]  Sarah Dubrac,et al.  The Pleiotropic CymR Regulator of Staphylococcus aureus Plays an Important Role in Virulence and Stress Response , 2010, PLoS pathogens.

[16]  C. Arias,et al.  Dissemination of methicillin-resistant Staphylococcus aureus USA300 sequence type 8 lineage in Latin America. , 2009, Clinical infectious diseases : an official publication of the Infectious Diseases Society of America.

[17]  David L. Smith,et al.  Community-associated Methicillin-Resistant Staphylococcus aureus in Outpatients, United States, 1999–2006 , 2009, Emerging infectious diseases.

[18]  F. Tenover,et al.  Methicillin-resistant Staphylococcus aureus strain USA300: origin and epidemiology. , 2009, The Journal of antimicrobial chemotherapy.

[19]  J. Schein,et al.  ABySS: a parallel assembler for short read sequence data. , 2009, Genome research.

[20]  Alexandros Stamatakis,et al.  How Many Bootstrap Replicates Are Necessary? , 2009, RECOMB.

[21]  F. DeLeo,et al.  Evolution of virulence in epidemic community-associated methicillin-resistant Staphylococcus aureus , 2009, Proceedings of the National Academy of Sciences.

[22]  C. Arias,et al.  MRSA USA300 clone and VREF--a U.S.-Colombian connection? , 2008, The New England journal of medicine.

[23]  A. Husain,et al.  Comparison of virulence in community-associated methicillin-resistant Staphylococcus aureus pulsotypes USA300 and USA400 in a rat model of pneumonia. , 2008, The Journal of infectious diseases.

[24]  David L. Smith,et al.  Hospitalizations and Deaths Caused by Methicillin-Resistant Staphylococcus aureus, United States, 1999–2005 , 2007, Emerging infectious diseases.

[25]  Roberta B Carey,et al.  Invasive methicillin-resistant Staphylococcus aureus infections in the United States. , 2007, JAMA.

[26]  F. Tenover,et al.  Epidemiologic Distribution of the Arginine Catabolic Mobile Element among Selected Methicillin-Resistant and Methicillin-Susceptible Staphylococcus aureus Isolates , 2007, Journal of Clinical Microbiology.

[27]  C. Arias,et al.  Community-associated Methicillin-resistant Staphylococcus aureus, Colombia , 2006, Emerging infectious diseases.

[28]  Alexandros Stamatakis,et al.  RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models , 2006, Bioinform..

[29]  R. Weinstein,et al.  Community-associated Methicillin-resistant Staphylococcus aureus , 2006, Emerging infectious diseases.

[30]  Gloria M. Coruzzi,et al.  OrthologID: automation of genome-scale ortholog identification within a parsimony framework , 2006, Bioinform..

[31]  S. Ho,et al.  Relaxed Phylogenetics and Dating with Confidence , 2006, PLoS biology.

[32]  G. Sensabaugh,et al.  Complete genome sequence of USA300, an epidemic clone of community-acquired meticillin-resistant Staphylococcus aureus , 2006, The Lancet.

[33]  R. Gaynes,et al.  Changes in the epidemiology of methicillin-resistant Staphylococcus aureus in intensive care units in US hospitals, 1992-2003. , 2006, Clinical infectious diseases : an official publication of the Infectious Diseases Society of America.

[34]  J. Patel,et al.  Characterization of a Strain of Community-AssociatedMethicillin-Resistant Staphylococcus aureus WidelyDisseminated in the UnitedStates , 2006, Journal of Clinical Microbiology.

[35]  D. Robinson,et al.  Evolutionary Models of the Emergence of Methicillin-Resistant Staphylococcus aureus , 2003, Antimicrobial Agents and Chemotherapy.

[36]  C. Stoeckert,et al.  OrthoMCL: identification of ortholog groups for eukaryotic genomes. , 2003, Genome research.

[37]  P. Lewis A likelihood approach to estimating phylogeny from discrete morphological character data. , 2001, Systematic biology.

[38]  Ziheng Yang Maximum likelihood phylogenetic estimation from DNA sequences with variable rates over sites: Approximate methods , 1994, Journal of Molecular Evolution.

[39]  W. Fitch Toward Defining the Course of Evolution: Minimum Change for a Specific Tree Topology , 1971 .

[40]  Alonso Ruiz,et al.  Department of Mathematics , 1895 .

[41]  M. Suchard,et al.  phylogenetics with , 2012 .

[42]  D. Maddison,et al.  Mesquite: a modular system for evolutionary analysis. Version 2.6 , 2009 .

[43]  G. Serio,et al.  A new method for calculating evolutionary substitution rates , 2005, Journal of Molecular Evolution.

[44]  G. McVean,et al.  The coalescent , 2022 .