A-stable diagonally implicit Runge-Kutta-Nyström methods for parallel computers

In this paper, we study diagonally implicit Runge-Kutta-Nyström methods (DIRKN methods) for use on parallel computers. These methods are obtained by diagonally implicit iteration of fully implicit Runge-Kutta-Nyström methods (corrector methods). The number of iterations is chosen such that the method has the same order of accuracy as the corrector, and the iteration parameters serve to make the method at least A-stable. Since a large number of the stages can be computed in parallel, the methods are very efficient on parallel computers. We derive a number of A-stable, strongly A-stable and L-stable DIRKN methods of orderp withs* (p) sequential, singly diagonal-implicit stages wheres*(p)=[(p+1)/2] ors* (p)=[(p+1)/2]+1,[°] denoting the integer part function.

[1]  P. Hartman Ordinary Differential Equations , 1965 .

[2]  Jeff Cash,et al.  On the Design of a Variable Order, Variable Step Diagonally Implicit Runge-Kutta Algorithm , 1980 .

[3]  A. Iserles,et al.  On the Theory of Parallel Runge—Kutta Methods , 1990 .

[4]  J. Butcher The numerical analysis of ordinary differential equations: Runge-Kutta and general linear methods , 1987 .

[5]  J. R. Cash,et al.  Diagonally Implicit Runge-Kutta Formulae with Error Estimates , 1979 .

[6]  Rüdiger Weiner,et al.  Nichtlineare Stabilität und Phasenuntersuchung adaptiver Nyström-Runge-Kutta-Methoden , 2005, Computing.

[7]  Nguyen Huu Cong,et al.  Stability of collocation-based Runge-Kutta-Nyström methods , 1991 .

[8]  J. C. Butcher,et al.  Parallelism in the Numerical Integration of Initial Value Problems. , 1993 .

[9]  Philip W. Sharp,et al.  Two-stage and Three-stage Diagonally Implicit Runge-Kutta Nyström Methods of Orders Three and Four , 1990 .

[10]  Eric Fehlberg Klassische Runge-Kutta-Nystriim-Formeln mit Schrittweiten-Kontrolle f'dr Differentialgleichungen ~ = f (t, x) , 1972 .

[11]  E. Hairer,et al.  Solving Ordinary Differential Equations I , 1987 .

[12]  Erwin Fehlberg,et al.  Klassische Runge-Kutta-Nyström-Formeln mit Schrittweiten-Kontrolle für Differentialgleichungen $$\ddot x = f(t, x)$$ , 1972, Computing.

[13]  A. Sayfy,et al.  Semiexplicit A -Stable Runge-Kutta Methods , 1979 .

[14]  Ben P. Sommeijer,et al.  Embedded diagonally implicit Runge-Kutta algorithms on parallel computers , 1989 .

[15]  Nguyen Huu Cong,et al.  Parallel diagonally implicit Runge-Kutta-Nystro¨m methods , 1992 .

[16]  P. G. Thomsen,et al.  Embeddedsdirk-methods of basic order three , 1984 .

[17]  L. Kramarz Stability of collocation methods for the numerical solution ofy″=f (x,y) , 1980 .