A Hybrid Numerical Technique for the Solution of a Class of Implicit Matrix Differential Equation
暂无分享,去创建一个
[1] Charles R. Johnson,et al. Matrix analysis , 1985, Statistical Inference for Engineers and Data Scientists.
[2] U. Helmke,et al. Optimization and Dynamical Systems , 1994, Proceedings of the IEEE.
[3] Leiba Rodman,et al. Algebraic Riccati equations , 1995 .
[4] Nicoletta Del Buono,et al. Numerical Integration of a Class of Ordinary Differential Equations on the General Linear Group of Matrices , 2003, Numerical Algorithms.
[5] N. Trendafilov,et al. The multimode Procrustes problem , 2002 .
[6] Ernst Hairer,et al. The numerical solution of differential-algebraic systems by Runge-Kutta methods , 1989 .
[7] Linda R. Petzold,et al. Numerical solution of initial-value problems in differential-algebraic equations , 1996, Classics in applied mathematics.
[8] R. Kala,et al. The Matrix Equation AX - YB = C , 1979 .
[9] Jan Brandts,et al. Computing tall skinny solutions of AX-XB=C , 2003, Math. Comput. Simul..
[10] V. Mehrmann,et al. A MULTISHIFT ALGORITHM FOR THE NUMERICAL SOLUTION OF ALGEBRAIC RICCATI EQUATIONS , 1993 .
[11] Charles R. Johnson,et al. Topics in Matrix Analysis , 1991 .
[12] N. Del Buono,et al. Geometric Integration on Manifold of Square Oblique Rotation Matrices , 2001, SIAM J. Matrix Anal. Appl..
[13] Uri M. Ascher,et al. Computer methods for ordinary differential equations and differential-algebraic equations , 1998 .
[14] Alan J. Laub,et al. On a Newton-Like Method for Solving Algebraic Riccati Equations , 1999, SIAM J. Matrix Anal. Appl..
[15] Moody T. Chu,et al. Inverse Eigenvalue Problems , 1998, SIAM Rev..