Transition metal chlorides are Lewis acids toward terminal chloride attached to late transition metals.

Two different neutral tridentate imine-donor pincer ligands interact with excess MCl2 (M = Co or Cu) to form compounds of the same stoichiometry, (LMCl2)2·MCl2, where the assembling force is the electron richness of the terminal chlorides on the LMCl2 unit. Finite aggregation occurs for M = Co, but for M = Cu, an infinite polymeric structure is adopted, all because MCl2 is bifunctional, which thus bridges multiple MCl units. The bis-pyrazolylpyridine ligand has two acidic NH protons, and both of these are involved in intramolecular hydrogen bonds. The generality of this Lewis acid aggregation is discussed.

[1]  T. Ikariya,et al.  N-N bond cleavage of hydrazines with a multiproton-responsive pincer-type iron complex. , 2013, Journal of the American Chemical Society.

[2]  S. Fukuzumi,et al.  A mononuclear non-heme manganese(IV)-oxo complex binding redox-inactive metal ions. , 2013, Journal of the American Chemical Society.

[3]  Jeramie J. Adams,et al.  Acceptor pincer Ru(II) chemistry. , 2012, Dalton transactions.

[4]  P. Hildebrandt,et al.  Lewis acid trapping of an elusive copper-tosylnitrene intermediate using scandium triflate. , 2012, Journal of the American Chemical Society.

[5]  W. Lubitz,et al.  Crucial role of paramagnetic ligands for magnetostructural anomalies in "breathing crystals". , 2012, Inorganic chemistry.

[6]  Caishun Zhang,et al.  Neutral mononuclear, dinuclear, tetranuclear d7/d10 metal complexes containing bis-pyrazole/pyridine ligands supported by 2,6-bis(3-pyrazolyl)pyridine: synthesis, structure, spectra, and catalytic activity. , 2012, Inorganic chemistry.

[7]  T. Ikariya,et al.  Synthesis, structures, and reactivities of pincer-type ruthenium complexes bearing two proton-responsive pyrazole arms. , 2012, Chemistry, an Asian journal.

[8]  Jun Gao,et al.  Preparation of a nitrate-coordinated copper(II) complex of 2-(pyrazol-3-yl)-6-(pyrazolate)pyridine as an efficient catalyst for methyl methacrylate polymerization. , 2012, Dalton transactions.

[9]  W. Thiel,et al.  New N,N,N-Donors Resulting in Highly Active Ruthenium Catalysts for Transfer Hydrogenation at Room Temperature , 2011 .

[10]  J. Forniés,et al.  A new class of polymeric complexes having Pt–Ag interactions: Crystal structure of |{[(PPh3)(C6F5)Pt(μ-Cl)]2Ag}(μ-Cl)2Ag(MeOH)|n , 2010 .

[11]  R. Woodward,et al.  Di[2,6-bis(5-phenylpyrazol-3-yl)pyridine]Co(II): an old coordination mode for a novel supramolecular assembly , 2010 .

[12]  J. Kusz,et al.  Cu(N―N)2Cl2 and Cu(N―N―N)Cl2 and HgCl2 building blocks in the synthesis of coordination compounds—X—ray studies and magnetic properties , 2010 .

[13]  M. Page,et al.  Pyridine-2,6-bis(thioether) (SNS) complexes of ruthenium as catalysts for transfer hydrogenation , 2010 .

[14]  A. Powell,et al.  Structural motifs and topological representation of Mn coordination clusters. , 2010, Chemical Society reviews.

[15]  G. Meyer Heteroleptic samarium(II) complexes by base-induced reduction. , 2010, Angewandte Chemie.

[16]  John C. McMurtrie,et al.  Bis[cis-bis(diphenylphosphino)ethene]copper(I) dichloridocuprate(I) , 2010, Acta crystallographica. Section E, Structure reports online.

[17]  C. Stoumpos,et al.  Adventures in the Coordination Chemistry of Di-2-pyridyl Ketone and Related Ligands: From High-Spin Molecules and Single-Molecule Magnets to Coordination Polymers, and from Structural Aesthetics to an Exciting New Reactivity Chemistry of Coordinated Ligands†‡ , 2009 .

[18]  L. Dahlenburg,et al.  Experimental and computational studies of two new mono-and dinuclear iridium complexes containing a Buchwald biphenyl phosphine ligand , 2008 .

[19]  H. Miyasaka,et al.  Magnetic assemblies based on Mn(III) salen analogues , 2007 .

[20]  T. Harris,et al.  Synthesis and X-ray Crystal Structure of [(C5Ph5)CrCl(μ-Cl)2Tl]2: An Example of the Rare M−X−TlI Linkage (X = Halide) , 2007 .

[21]  Ian D. Williams,et al.  Electrophilic ruthenium(VI) nitrido complex containing Kläui's oxygen tripodal ligand. , 2007, Inorganic chemistry.

[22]  Y. Kondo,et al.  Deprotonative metalation using ate compounds: synergy, synthesis, and structure building. , 2007, Angewandte Chemie.

[23]  M. Yamashita,et al.  A look at molecular nanosized magnets from the aspect of inter-molecular interactions. , 2007, Dalton transactions.

[24]  M. Halcrow The synthesis and coordination chemistry of 2,6-bis(pyrazolyl)pyridines and related ligands — Versatile terpyridine analogues , 2005 .

[25]  Fusen Han,et al.  Arrested chloride abstraction from trans-RuCl2(DMeOPrPE)2 with TlPF6; formation of a 1-D coordination polymer having unusual octahedral coordination around thallium(I). , 2004, Dalton transactions.

[26]  L. Gade Tripodal Triamidometallates of the Heavy Group 14 Elements: Inorganic Cages with Remarkable ''Ligand Properties'' , 2002 .

[27]  J. Reedijk,et al.  Copper(II) compounds of the planar-tridentate ligand 2,6-bis(pyrazol-3-yl)pyridine , 2002 .

[28]  F. Lahoz,et al.  Synthesis and molecular structure of [[(HBpz(3))Rh(PPh(3))(mu-Cl)(2)](2)Ag]BF(4) (Hpz = pyrazole), a heterotrinuclear Rh(2)Ag compound with square-planar silver(I). , 2002, Inorganic chemistry.

[29]  J. Charnock,et al.  Silver(I)-mediated isomerisation of trans-[RuCl2(P–P)2] (P–P = four-membered ring chelate diphosphine ligand) to cis-[{Ru(P–P)2(μ-Cl)2}nAg]+ species, and applications in stereoselective syntheses of cis- and trans-[RuCl(L)(P–P)2]+ (L = neutral ligand) , 2001 .

[30]  W. Sheldrick,et al.  Solvolysis, structure and reactivity of (1,4,7-trimethyl-1,4,7-triazacyclononane)rhodium(III) complexes [RhCl3−xLx(Me3[9]aneN3)](x)+ (L=CH3CN, DMSO, DMF) and [RhCl(pyz)2(Me3[9]aneN3)] (Hpyz=pyrazole) , 2000 .

[31]  S. Higgins,et al.  Silver(I)-mediated isomerisation of trans-[RuCl2(P-P)2] (P-P=4-membered ring chelate diphosphine ligand) and its application in the syntheses of [RuCl(L)(P-P)2]+ (L=neutral ligand) , 2000 .

[32]  D. Craig,et al.  The syntheses, spectra and structures of five-coordinate cobalt(II) complexes of pyrazolyl-containing ligands , 1999 .

[33]  K. G. Caulton THE INFLUENCE OF PI -STABILIZED UNSATURATION AND FILLED/FILLED REPULSIONS IN TRANSITION METAL CHEMISTRY , 1994 .

[34]  P. Braunstein,et al.  Complexes of functional phosphines. 23. PPh3 and .beta.-ketophosphine complexes of cobalt(II). Crystal and molecular structures of CoCl2[Ph2PCH2C(O)Ph]2 and Co2(CO)6[Ph2PCH2C(O)Ph]2 and of the trinuclear, mixed-metal complex [(Ph3P)2Ag(.mu.-Cl)2Co(.mu.-Cl)2Ag(PPh3)2].cntdot.0.50Et2 , 1994 .

[35]  M. Peruzzini,et al.  Synthesis, characterization, and molecular structure of the first metal complex containing thallium chloride as a ligand. A novel carrier of thallium(I) , 1992 .

[36]  C. Reed,et al.  Observations on silver salt metathesis reactions with very weakly coordinating anions , 1989 .

[37]  J. Kildea,et al.  Lewis-base adducts of Group 11 metal(I) compounds. Part 58. Syntheses, X-ray structures, and far-infrared spectra of the novel [CuX2(bidentate ligand)]–(X = Cl or Br) anion salts of the [Cu(dpa)2]+ cation and the dimeric iodide [(dpa)Cul2Cu(dpa)][dpa = di(2-pyridyl)amine] , 1989 .