Beyond gene expression: the impact of protein post-translational modifications in bacteria.

The post-translational modification (PTM) of proteins plays a critical role in the regulation of a broad range of cellular processes in eukaryotes. Yet their role in governing similar systems in the conventionally presumed 'simpler' forms of life has been largely neglected and, until recently, was thought to occur only rarely, with some modifications assumed to be limited to higher organisms alone. Recent developments in mass spectrometry-based proteomics have provided an unparalleled power to enrich, identify and quantify peptides with PTMs. Additional modifications to biological molecules such as lipids and carbohydrates that are essential for bacterial pathophysiology have only recently been detected on proteins. Here we review bacterial protein PTMs, focusing on phosphorylation, acetylation, proteolytic degradation, methylation and lipidation and the roles they play in bacterial adaptation - thus highlighting the importance of proteomic techniques in a field that is only just in its infancy. This article is part of a Special Issue entitled: Trends in Microbial Proteomics.

[1]  P. Roepstorff,et al.  Highly Selective Enrichment of Phosphorylated Peptides from Peptide Mixtures Using Titanium Dioxide Microcolumns* , 2005, Molecular & Cellular Proteomics.

[2]  T. Chakraborty,et al.  Lipoproteins of Listeria monocytogenes Are Critical for Virulence and TLR2-Mediated Immune Activation1 , 2008, The Journal of Immunology.

[3]  N. Robinson,et al.  Structure-dependent nonenzymatic deamidation of glutaminyl and asparaginyl pentapeptides. , 2004, The journal of peptide research : official journal of the American Peptide Society.

[4]  M. Madan Babu,et al.  A Database of Bacterial Lipoproteins (DOLOP) with Functional Assignments to Predicted Lipoproteins , 2006, Journal of bacteriology.

[5]  Alfred Hausladen,et al.  Endogenous Protein S-Nitrosylation in E. coli: Regulation by OxyR , 2012, Science.

[6]  R. Goody,et al.  Adenylylation: renaissance of a forgotten post-translational modification. , 2011, Trends in biochemical sciences.

[7]  N. Dixon,et al.  Characterization of Cleavage Events in the Multifunctional Cilium Adhesin Mhp684 (P146) Reveals a Mechanism by Which Mycoplasma hyopneumoniae Regulates Surface Topography , 2012, mBio.

[8]  Ganesh S Anand,et al.  Kinetic basis for the stimulatory effect of phosphorylation on the methylesterase activity of CheB. , 2002, Biochemistry.

[9]  Martin Weigt,et al.  Structural basis of histidine kinase autophosphorylation deduced by integrating genomics, molecular dynamics, and mutagenesis , 2012, Proceedings of the National Academy of Sciences.

[10]  K. Isono,et al.  Cloning and nucleotide sequencing of the genes rimI and rimJ which encode enzymes acetylating ribosomal proteins S18 and S5 of Escherichia coli K12 , 1987, Molecular and General Genetics MGG.

[11]  R. Zuerner,et al.  Methylation and in vivo expression of the surface-exposed Leptospira interrogans outer-membrane protein OmpL32. , 2012, Microbiology.

[12]  M. Eisenbach,et al.  Acetylation of the response regulator, CheY, is involved in bacterial chemotaxis , 2001, Molecular microbiology.

[13]  C. Szymanski,et al.  Evidence for a system of general protein glycosylation in Campylobacter jejuni , 1999, Molecular microbiology.

[14]  S. Gygi,et al.  Ubiquitin-Like Protein Involved in the Proteasome Pathway of Mycobacterium tuberculosis , 2008, Science.

[15]  T. Cullen,et al.  Characterization of Unique Modification of Flagellar Rod Protein FlgG by Campylobacter jejuni Lipid A Phosphoethanolamine Transferase, Linking Bacterial Locomotion and Antimicrobial Peptide Resistance* , 2011, The Journal of Biological Chemistry.

[16]  Ivan Mijakovic,et al.  The Serine/Threonine/Tyrosine Phosphoproteome of the Model Bacterium Bacillus subtilis*S , 2007, Molecular & Cellular Proteomics.

[17]  K. Isono,et al.  Cloning and molecular characterization of the generimL wich encodes an enzyme acetylating ribosomal protein L12 ofEscherichia coki K12 , 1989, Molecular and General Genetics MGG.

[18]  E. Tate,et al.  A New Chemical Handle for Protein AMPylation at the Host–Pathogen Interface , 2012, Chembiochem : a European journal of chemical biology.

[19]  Tao Sun,et al.  Comparison of β‐lactamases of classes A and D: 1.5‐Å crystallographic structure of the class D OXA‐1 oxacillinase , 2003, Protein science : a publication of the Protein Society.

[20]  S. Meroueh,et al.  Resistance to β-Lactam Antibiotics and Its Mediation by the Sensor Domain of the Transmembrane BlaR Signaling Pathway in Staphylococcus aureus * 210 , 2003, The Journal of Biological Chemistry.

[21]  J. Galán,et al.  Modulation of Rab GTPase function by a protein phosphocholine transferase , 2011, Nature.

[22]  J. Rosenbusch,et al.  Cysteine phosphorylation of the glucose transporter of Escherichia coli. , 1993, The Journal of biological chemistry.

[23]  B. Maček,et al.  Proteomics reveals evidence of cross-talk between protein modifications in bacteria: focus on acetylation and phosphorylation. , 2012, Current opinion in microbiology.

[24]  M. Mann,et al.  Lysine Acetylation Targets Protein Complexes and Co-Regulates Major Cellular Functions , 2009, Science.

[25]  D. Leonard,et al.  Site-saturation mutagenesis of position V117 in OXA-1 β-lactamase: effect of side chain polarity on enzyme carboxylation and substrate turnover. , 2012, Biochemistry.

[26]  G. Griffin,et al.  Demonstration and partial characterization of ADP-ribosylation in Pseudomonas maltophilia. , 1989, The Biochemical journal.

[27]  H. Schlegel,et al.  Lysine carboxylation in proteins: OXA‐10 β‐lactamase , 2005 .

[28]  H. Nakayama,et al.  Environment-Mediated Accumulation of Diacyl Lipoproteins over Their Triacyl Counterparts in Staphylococcus aureus , 2012, Journal of bacteriology.

[29]  J. Trowsdale,et al.  A Salmonella typhimurium Effector Protein SifA Is Modified by Host Cell Prenylation and S-Acylation Machinery* , 2005, Journal of Biological Chemistry.

[30]  N. Robinson,et al.  Protein deamidation , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[31]  V. Dötsch,et al.  Functional Expression of the PorAH Channel from Corynebacterium glutamicum in Cell-free Expression Systems , 2011, The Journal of Biological Chemistry.

[32]  U. Bonas,et al.  New type III effectors from Xanthomonas campestris pv. vesicatoria trigger plant reactions dependent on a conserved N-myristoylation motif. , 2007, Molecular plant-microbe interactions : MPMI.

[33]  Kris Gevaert,et al.  N-terminal acetylation and other functions of Nα-acetyltransferases , 2012, Biological chemistry.

[34]  Ivan Mijakovic,et al.  MATERIALS AND METHODS , 1981, Green Corrosion Inhibitors: Reviews and Applications.

[35]  Rodionov Av,et al.  Isolation and partial characterization of the M(r) 100 kD protein from Rickettsia prowazekii strains of different virulence. , 1991 .

[36]  R. Goody,et al.  The Legionella Effector Protein DrrA AMPylates the Membrane Traffic Regulator Rab1b , 2010, Science.

[37]  Han Rauwerda,et al.  Analysis of Temporal Gene Expression during Bacillus subtilis Spore Germination and Outgrowth , 2007, Journal of bacteriology.

[38]  L. Kotra,et al.  Hydrolytic Mechanism of OXA-58 Enzyme, a Carbapenem-hydrolyzing Class D β-Lactamase from Acinetobacter baumannii , 2011, The Journal of Biological Chemistry.

[39]  D. Koshland,et al.  Sites of methyl esterification and deamination on the aspartate receptor involved in chemotaxis. , 1984, The Journal of biological chemistry.

[40]  M. Wolfgang,et al.  Genetic and Functional Analyses of PptA, a Phospho-Form Transferase Targeting Type IV Pili in Neisseria gonorrhoeae , 2007, Journal of bacteriology.

[41]  M. Nilges,et al.  Posttranslational Modification of Pili upon Cell Contact Triggers N. meningitidis Dissemination , 2011, Science.

[42]  J. Ecker,et al.  A Family of Bacterial Cysteine Protease Type III Effectors Utilizes Acylation-dependent and -independent Strategies to Localize to Plasma Membranes , 2009, The Journal of Biological Chemistry.

[43]  B. Imperiali,et al.  Chemoenzymatic synthesis of glycopeptides with PglB, a bacterial oligosaccharyl transferase from Campylobacter jejuni. , 2005, Chemistry & biology.

[44]  P. Hitchen,et al.  Unique modifications with phosphocholine and phosphoethanolamine define alternate antigenic forms of Neisseria gonorrhoeae type IV pili. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[45]  R. Smith,et al.  Phosphorylation on basic amino acids in myelin basic protein. , 1976, Biochemical and biophysical research communications.

[46]  Nick V Grishin,et al.  Lysine Acetylation Is a Highly Abundant and Evolutionarily Conserved Modification in Escherichia Coli*S , 2009, Molecular & Cellular Proteomics.

[47]  J. Escalante‐Semerena,et al.  Identification of the protein acetyltransferase (Pat) enzyme that acetylates acetyl-CoA synthetase in Salmonella enterica. , 2004, Journal of molecular biology.

[48]  M. Quadroni,et al.  Evidence for a new post-translational modification in Staphylococcus aureus: hydroxymethylation of asparagine and glutamine. , 2012, Journal of proteomics.

[49]  J. Blanchard,et al.  Crystal structure of RimI from Salmonella typhimurium LT2, the GNAT responsible for Nα‐acetylation of ribosomal protein S18 , 2008, Protein science : a publication of the Protein Society.

[50]  K. Isono,et al.  Ribosomal protein modification in Escherichia coli , 2004, Molecular and General Genetics MGG.

[51]  B. Joris,et al.  Bacillus licheniformis BlaR1 L3 Loop Is a Zinc Metalloprotease Activated by Self-Proteolysis , 2012, PloS one.

[52]  H. C. Wu,et al.  Lipid modification of bacterial prolipoprotein. Transfer of diacylglyceryl moiety from phosphatidylglycerol. , 1994, The Journal of biological chemistry.

[53]  G. Besra,et al.  The ppm Operon Is Essential for Acylation and Glycosylation of Lipoproteins in Corynebacterium glutamicum , 2012, PloS one.

[54]  K. Burns,et al.  Prokaryotic Ubiquitin-Like Protein Provides a Two-Part Degron to Mycobacterium Proteasome Substrates , 2010, Journal of bacteriology.

[55]  M. Gucek,et al.  Two Protein Lysine Methyltransferases Methylate Outer Membrane Protein B from Rickettsia , 2012, Journal of bacteriology.

[56]  Cheng Lin,et al.  Use of 18O labels to monitor deamidation during protein and peptide sample processing , 2008, Journal of the American Society for Mass Spectrometry.

[57]  A. Heck,et al.  Unbiased Selective Isolation of Protein N-terminal Peptides from Complex Proteome Samples Using Phospho Tagging (PTAG) and TiO2-based Depletion* , 2012, Molecular & Cellular Proteomics.

[58]  W. Bishai,et al.  "Depupylation" of prokaryotic ubiquitin-like protein from mycobacterial proteasome substrates. , 2010, Molecular cell.

[59]  S. Akira,et al.  Novel Bacterial Lipoprotein Structures Conserved in Low-GC Content Gram-positive Bacteria Are Recognized by Toll-like Receptor 2* , 2012, The Journal of Biological Chemistry.

[60]  Pitter F. Huesgen,et al.  Proteome-wide analysis of protein carboxy termini: C terminomics , 2010, Nature Methods.

[61]  S. H. Kaufmann,et al.  CFP10 discriminates between nonacetylated and acetylated ESAT‐6 of Mycobacterium tuberculosis by differential interaction , 2004, Proteomics.

[62]  G. Jarvis,et al.  Natural Phosphoryl and Acyl Variants of Lipid A from Neisseria meningitidis Strain 89I Differentially Induce Tumor Necrosis Factor-α in Human Monocytes* , 2009, The Journal of Biological Chemistry.

[63]  S. Leppla,et al.  Lipoprotein biosynthesis by prolipoprotein diacylglyceryl transferase is required for efficient spore germination and full virulence of Bacillus anthracis , 2012, Molecular microbiology.

[64]  S. Clarke,et al.  Deamidation, isomerization, and racemization at asparaginyl and aspartyl residues in peptides. Succinimide-linked reactions that contribute to protein degradation. , 1987, The Journal of biological chemistry.

[65]  Nichollas E. Scott,et al.  Modification of the Campylobacter jejuni N-Linked Glycan by EptC Protein-mediated Addition of Phosphoethanolamine* , 2012, The Journal of Biological Chemistry.

[66]  R. Zubarev,et al.  Mass spectrometric analysis of asparagine deamidation and aspartate isomerization in polypeptides , 2010, Electrophoresis.

[67]  J. Dixon,et al.  Inhibition of the mitogen-activated protein kinase kinase superfamily by a Yersinia effector. , 1999, Science.

[68]  Zhao‐Qing Luo,et al.  Legionella pneumophila regulates the small GTPase Rab1 activity by reversible phosphorylcholination , 2011, Proceedings of the National Academy of Sciences.

[69]  H. Tokuda,et al.  Overexpression of LolCDE Allows Deletion of the Escherichia coli Gene Encoding Apolipoprotein N-Acyltransferase , 2011, Journal of bacteriology.

[70]  David T. Barkan,et al.  Global Sequencing of Proteolytic Cleavage Sites in Apoptosis by Specific Labeling of Protein N Termini , 2008, Cell.

[71]  C. Wolberger,et al.  N-Lysine Propionylation Controls the Activity of Propionyl-CoA Synthetase* , 2007, Journal of Biological Chemistry.

[72]  A. B. Robinson,et al.  Deamidation of glutaminyl residues: dependence on pH, temperature, and ionic strength. , 1974, Analytical biochemistry.

[73]  M. Riese,et al.  ADP-ribosylation and functional effects of Pseudomonas exoenzyme S on cellular RalA. , 2002, Biochemistry.

[74]  C. Szymanski,et al.  Structure of the N-Linked Glycan Present on Multiple Glycoproteins in the Gram-negative Bacterium, Campylobacter jejuni * , 2002, The Journal of Biological Chemistry.

[75]  Serological Reactivity and Biochemical Characterization of Methylated and Unmethylated Forms of a Recombinant Protein Fragment Derived from Outer Membrane Protein B of Rickettsia typhi , 2008, Clinical and Vaccine Immunology.

[76]  K. Isono,et al.  Ribosomal protein modification in Escherichia coli , 2004, Molecular and General Genetics MGG.

[77]  J. Wehland,et al.  Inactivation of Lgt Allows Systematic Characterization of Lipoproteins from Listeria monocytogenes , 2006, Journal of bacteriology.

[78]  C. Szymanski,et al.  Biosynthesis of the N-Linked Glycan in Campylobacter jejuni and Addition onto Protein through Block Transfer , 2006, Journal of bacteriology.

[79]  J. Escalante‐Semerena,et al.  In Bacillus subtilis, the Sirtuin Protein Deacetylase, Encoded by the srtN Gene (Formerly yhdZ), and Functions Encoded by the acuABC Genes Control the Activity of Acetyl Coenzyme A Synthetase , 2009, Journal of bacteriology.

[80]  Xiaoyuan Wang,et al.  Periplasmic Cleavage and Modification of the 1-Phosphate Group of Helicobacter pylori Lipid A* , 2004, Journal of Biological Chemistry.

[81]  G. Ordal,et al.  Bacillus subtilis CheD Is a Chemoreceptor Modification Enzyme Required for Chemotaxis* , 2002, The Journal of Biological Chemistry.

[82]  D. Phillips The presence of acetyl groups of histones. , 1963, The Biochemical journal.

[83]  N. Grishin,et al.  Fido, a Novel AMPylation Domain Common to Fic, Doc, and AvrB , 2009, PloS one.

[84]  V. Zídek,et al.  CobB1 deacetylase activity in Streptomyces coelicolor. , 2012, Biochemistry and cell biology = Biochimie et biologie cellulaire.

[85]  Guo-Ping Zhao,et al.  Acetylation of Metabolic Enzymes Coordinates Carbon Source Utilization and Metabolic Flux , 2010, Science.

[86]  K. Aktories,et al.  ADP-ribosylation of an approximately 70-kilodalton protein of Klebsiella pneumoniae , 1996, Infection and immunity.

[87]  Nikita Vladimirov,et al.  Chemotaxis: how bacteria use memory , 2009, Biological chemistry.

[88]  M. Bott,et al.  Towards a phosphoproteome map of Corynebacterium glutamicum , 2003, Proteomics.

[89]  George M. Church,et al.  Extensive phosphorylation with overlapping specificity by Mycobacterium tuberculosis serine/threonine protein kinases , 2010, Proceedings of the National Academy of Sciences.

[90]  Hui-peng Chen,et al.  Studies of the in vitro Nα-acetyltransferase activities of E. coli RimL protein , 2007 .

[91]  K. Schey,et al.  ADP-ribosylation of cyclophilin A by Pseudomonas aeruginosa exoenzyme S. , 2006, Biochemistry.

[92]  Pantelis G Bagos,et al.  Prediction of lipoprotein signal peptides in Gram-positive bacteria with a Hidden Markov Model. , 2008, Journal of proteome research.

[93]  A. Segall,et al.  Staphylococcus aureus SarA is a regulatory protein responsive to redox and pH that can support bacteriophage lambda integrase‐mediated excision/recombination , 2009, Molecular microbiology.

[94]  Prakash Anand,et al.  Twin arginine translocase pathway and fast-folding lipoprotein biosynthesis in E. coli: interesting implications and applications. , 2010, Molecular bioSystems.

[95]  J. Saunders,et al.  Discovery of a novel protein modification: alpha-glycerophosphate is a substituent of meningococcal pilin. , 1996, The Biochemical journal.

[96]  R. Goody,et al.  Characterization of Enzymes from Legionella pneumophila Involved in Reversible Adenylylation of Rab1 Protein* , 2012, The Journal of Biological Chemistry.

[97]  R. Goody,et al.  Posttranslational modifications of Rab proteins cause effective displacement of GDP dissociation inhibitor , 2012, Proceedings of the National Academy of Sciences.

[98]  Yuh-Shyong Yang,et al.  Effect of metal binding and posttranslational lysine carboxylation on the activity of recombinant hydantoinase , 2008, JBIC Journal of Biological Inorganic Chemistry.

[99]  G. Hurst,et al.  System-wide Studies of N-Lysine Acetylation in Rhodopseudomonas palustris Reveal Substrate Specificity of Protein Acetyltransferases* , 2012, The Journal of Biological Chemistry.

[100]  M. Larsen,et al.  Analytical strategies for phosphoproteomics , 2009, Expert review of neurotherapeutics.

[101]  Markus Aebi,et al.  Definition of the bacterial N‐glycosylation site consensus sequence , 2006, The EMBO journal.

[102]  Neil L Kelleher,et al.  Mass spectrometric characterization of human histone H3: a bird's eye view. , 2006, Journal of proteome research.

[103]  Steven P Gygi,et al.  Reconstitution of the Mycobacterium tuberculosis pupylation pathway in Escherichia coli , 2011, EMBO reports.

[104]  Benjamin E. Deverman,et al.  Chronoregulation by Asparagine Deamidation , 2007, Science's STKE.

[105]  B. Wren,et al.  The Campylobacter jejuni general glycosylation system is important for attachment to human epithelial cells and in the colonization of chicks. , 2004, Microbiology.

[106]  Chun-Wei Tung,et al.  PupDB: a database of pupylated proteins , 2012, BMC Bioinformatics.

[107]  Jeffrey W. Peng,et al.  Lysine Nζ-Decarboxylation Switch and Activation of the β-Lactam Sensor Domain of BlaR1 Protein of Methicillin-resistant Staphylococcus aureus* , 2011, The Journal of Biological Chemistry.

[108]  G. Storz,et al.  Activation of the OxyR transcription factor by reversible disulfide bond formation. , 1998, Science.

[109]  C. Herrera,et al.  Activation of PmrA inhibits LpxT-dependent phosphorylation of lipid A promoting resistance to antimicrobial peptides , 2010, Molecular microbiology.

[110]  M. Jennings,et al.  Identification and Characterization ofpptA: a Gene Involved in the Phase-Variable Expression ofPhosphorylcholine on Pili of Neisseriameningitidis , 2003, Infection and Immunity.

[111]  H. Nagasawa,et al.  Aminoacylation of the N-terminal Cysteine Is Essential for Lol-dependent Release of Lipoproteins from Membranes but Does Not Depend on Lipoprotein Sorting Signals* , 2002, The Journal of Biological Chemistry.

[112]  Qing‐Yu He,et al.  Phosphoproteome analysis of the pathogenic bacterium Helicobacter pylori reveals over‐representation of tyrosine phosphorylation and multiply phosphorylated proteins , 2011, Proteomics.

[113]  K. Arai,et al.  Primary structure of elongation factor Tu from Escherichia coli. , 1980, Proceedings of the National Academy of Sciences of the United States of America.

[114]  L. Kremer,et al.  Protein PknE, a novel transmembrane eukaryotic-like serine/threonine kinase from Mycobacterium tuberculosis. , 2003, Biochemical and biophysical research communications.

[115]  J. Brisson,et al.  Identification of the Carbohydrate Moieties and Glycosylation Motifs in Campylobacter jejuni Flagellin* , 2001, The Journal of Biological Chemistry.

[116]  D. Koshland,et al.  Sites of methyl esterification on the aspartate receptor involved in bacterial chemotaxis. , 1983, The Journal of biological chemistry.

[117]  B. Lemaître,et al.  Evf, a Virulence Factor Produced by the Drosophila Pathogen Erwinia carotovora, Is an S-Palmitoylated Protein with a New Fold That Binds to Lipid Vesicles* , 2009, Journal of Biological Chemistry.

[118]  Ann M Stock,et al.  Activation of methylesterase CheB: evidence of a dual role for the regulatory domain. , 1998, Biochemistry.

[119]  J. Escalante‐Semerena,et al.  Biochemical and Mutational Analyses of AcuA, the Acetyltransferase Enzyme That Controls the Activity of the Acetyl Coenzyme A Synthetase (AcsA) in Bacillus subtilis , 2008, Journal of bacteriology.

[120]  D. Shi,et al.  Reversible post-translational carboxylation modulates the enzymatic activity of N-acetyl-L-ornithine transcarbamylase. , 2010, Biochemistry.

[121]  L. Foster,et al.  Isotopic labeling of terminal amines in complex samples identifies protein N-termini and protease cleavage products , 2010, Nature Biotechnology.

[122]  C. Harwood,et al.  Reversible Nε‐lysine acetylation regulates the activity of acyl‐CoA synthetases involved in anaerobic benzoate catabolism in Rhodopseudomonas palustris , 2010, Molecular microbiology.

[123]  Qun Ma,et al.  Protein acetylation in prokaryotes increases stress resistance. , 2011, Biochemical and biophysical research communications.

[124]  T. Arnesen,et al.  Protein alpha‐N‐acetylation studied by N‐terminomics , 2011, The FEBS journal.

[125]  M. Rao,et al.  Molecular and Biotechnological Aspects of Microbial Proteases , 1998, Microbiology and Molecular Biology Reviews.

[126]  R. B. Merrifield,et al.  Mass spectrometric evaluation of synthetic peptides as primary structure models for peptide and protein deamidation. , 2001, The journal of peptide research : official journal of the American Peptide Society.

[127]  Lisa N Kinch,et al.  AMPylation of Rho GTPases by Vibrio VopS Disrupts Effector Binding and Downstream Signaling , 2009, Science.

[128]  H. Tokuda,et al.  Amino Acids at Positions 3 and 4 Determine the Membrane Specificity of Pseudomonas aeruginosa Lipoproteins* , 2007, Journal of Biological Chemistry.

[129]  B. Crossett,et al.  Mycoplasma hyopneumoniae Surface proteins Mhp385 and Mhp384 bind host cilia and glycosaminoglycans and are endoproteolytically processed by proteases that recognize different cleavage motifs. , 2012, Journal of proteome research.

[130]  M. J. Chalmers,et al.  Probing adenylation: using a fluorescently labelled ATP probe to directly label and immunoprecipitate VopS substrates. , 2012, Molecular bioSystems.

[131]  J. Blanchard,et al.  A Novel Dimeric Structure of the RimL Nα-acetyltransferase from Salmonella typhimurium* , 2005, Journal of Biological Chemistry.

[132]  D. Guttman,et al.  The HopZ Family of Pseudomonas syringae Type III Effectors Require Myristoylation for Virulence and Avirulence Functions in Arabidopsis thaliana , 2008, Journal of bacteriology.

[133]  Ann M Stock,et al.  Two-component signal transduction. , 2000, Annual review of biochemistry.

[134]  T. Frączyk,et al.  Phosphorylation of basic amino acid residues in proteins: important but easily missed. , 2011, Acta biochimica Polonica.

[135]  J. Dixon,et al.  Disruption of signaling by Yersinia effector YopJ, a ubiquitin-like protein protease. , 2000, Science.

[136]  Dörte Becher,et al.  S-Bacillithiolation Protects Against Hypochlorite Stress in Bacillus subtilis as Revealed by Transcriptomics and Redox Proteomics* , 2011, Molecular & Cellular Proteomics.

[137]  K. Ochi,et al.  Isolation and Identification of Novel ADP-Ribosylated Proteins from Streptomyces coelicolor A3(2) , 2002, Bioscience, biotechnology and biochemistry.

[138]  N. Robinson,et al.  Prediction of protein deamidation rates from primary and three-dimensional structure , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[139]  Beat Amstutz,et al.  Deletion of dop in Mycobacterium smegmatis abolishes pupylation of protein substrates in vivo , 2010, Molecular microbiology.

[140]  Zhihong Zhang,et al.  Identification of lysine succinylation as a new post-translational modification. , 2011, Nature chemical biology.

[141]  Anne Dell,et al.  Neisseria gonorrhoeae Type IV Pili Undergo Multisite, Hierarchical Modifications with Phosphoethanolamine and Phosphocholine Requiring an Enzyme Structurally Related to Lipopolysaccharide Phosphoethanolamine Transferases* , 2006, Journal of Biological Chemistry.

[142]  R. Benz,et al.  O-Mycoloylated Proteins from Corynebacterium , 2010, The Journal of Biological Chemistry.

[143]  H. Le Moual,et al.  Absence of PmrAB-Mediated Phosphoethanolamine Modifications of Citrobacter rodentium Lipopolysaccharide Affects Outer Membrane Integrity , 2011, Journal of bacteriology.

[144]  Nichollas E. Scott,et al.  Mass spectrometric characterization of the Campylobacter jejuni adherence factor CadF reveals post‐translational processing that removes immunogenicity while retaining fibronectin binding , 2010, Proteomics.

[145]  S. Foote,et al.  The cytoplasmic phosphoproteome of the Gram‐negative bacterium Campylobacter jejuni: Evidence for modification by unidentified protein kinases , 2007, Proteomics.

[146]  Kris Gevaert,et al.  Protein N-terminal acetyltransferases: when the start matters. , 2012, Trends in biochemical sciences.

[147]  F. Hildebrand,et al.  Global regulation of gene expression by OxyR in an important human opportunistic pathogen , 2012, Nucleic acids research.

[148]  She Chen,et al.  Glutamine Deamidation and Dysfunction of Ubiquitin/NEDD8 Induced by a Bacterial Effector Family , 2010, Science.

[149]  A. Penyige,et al.  ADP-ribosylation of membrane proteins ofStreptomyces griseusstrain 52-1 , 1990 .

[150]  R. Zeng,et al.  High-coverage proteome analysis reveals the first insight of protein modification systems in the pathogenic spirochete Leptospira interrogans , 2010, Cell Research.

[151]  R. Goody,et al.  Reversible phosphocholination of Rab proteins by Legionella pneumophila effector proteins , 2012, The EMBO journal.

[152]  Jörg Stülke,et al.  The Phosphoproteome of the Minimal Bacterium Mycoplasma pneumoniae , 2010, Molecular & Cellular Proteomics.

[153]  Nichollas E. Scott,et al.  Diversity in the Protein N-Glycosylation Pathways Within the Campylobacter Genus* , 2012, Molecular & Cellular Proteomics.

[154]  Qing‐Yu He,et al.  Phosphoproteomic analysis reveals the multiple roles of phosphorylation in pathogenic bacterium Streptococcus pneumoniae. , 2010, Journal of proteome research.

[155]  F. Sherman,et al.  Nα-terminal Acetylation of Eukaryotic Proteins* , 2000, The Journal of Biological Chemistry.

[156]  M. Koomey,et al.  Novel Protein Substrates of the Phospho-Form Modification System in Neisseria gonorrhoeae and Their Connection to O-Linked Protein Glycosylation , 2011, Infection and Immunity.

[157]  K. Mechtler,et al.  McsB Is a Protein Arginine Kinase That Phosphorylates and Inhibits the Heat-Shock Regulator CtsR , 2009, Science.

[158]  J. Escalante‐Semerena,et al.  In Salmonella enterica, the sirtuin‐dependent protein acylation/deacylation system (SDPADS) maintains energy homeostasis during growth on low concentrations of acetate , 2011, Molecular microbiology.

[159]  Michael Thommen,et al.  Mycobacterial Ubiquitin-like Protein Ligase PafA Follows a Two-step Reaction Pathway with a Phosphorylated Pup Intermediate* , 2010, The Journal of Biological Chemistry.

[160]  Henry S. Gibbons,et al.  Identification of Two Mycobacterium smegmatis Lipoproteins Exported by a SecA2-Dependent Pathway , 2007, Journal of bacteriology.

[161]  Hajime Tokuda,et al.  Lipoprotein sorting in bacteria. , 2011, Annual review of microbiology.

[162]  Nichollas E. Scott,et al.  Sequence TTKF↓QE Defines the Site of Proteolytic Cleavage in Mhp683 Protein, a Novel Glycosaminoglycan and Cilium Adhesin of Mycoplasma hyopneumoniae* , 2011, The Journal of Biological Chemistry.

[163]  E. Goldsmith,et al.  Yersinia YopJ Acetylates and Inhibits Kinase Activation by Blocking Phosphorylation , 2006, Science.

[164]  Jianjun Li,et al.  Phosphorylcholine Allows for Evasion of Bactericidal Antibody by Haemophilus influenzae , 2012, PLoS pathogens.

[165]  A. Schmidt,et al.  Adenylylation control by intra- or intermolecular active-site obstruction in Fic proteins , 2012, Nature.

[166]  R. Bonomo,et al.  Carboxylation and decarboxylation of active site Lys 84 controls the activity of OXA-24 β-lactamase of Acinetobacter baumannii: Raman crystallographic and solution evidence. , 2012, Journal of the American Chemical Society.

[167]  F. Dahlquist,et al.  Adaptation in bacterial chemotaxis: CheB-dependent modification permits additional methylations of sensory transducer proteins , 1982, Cell.

[168]  A. Yergey,et al.  De-AMPylation of the Small GTPase Rab1 by the Pathogen Legionella pneumophila , 2011, Science.

[169]  She Chen,et al.  A Xanthomonas uridine 5′-monophosphate transferase inhibits plant immune kinases , 2012, Nature.

[170]  Weiping Zheng,et al.  Sirtuin mechanism and inhibition: explored with N(ε)-acetyl-lysine analogs. , 2011, Molecular bioSystems.

[171]  Albert Sickmann,et al.  State‐of‐the‐art in phosphoproteomics , 2005, Proteomics.

[172]  Arne G. Schmeisky,et al.  Cross-talk between phosphorylation and lysine acetylation in a genome-reduced bacterium , 2012, Molecular systems biology.

[173]  J. Samama,et al.  Critical involvement of a carbamylated lysine in catalytic function of class D β-lactamases , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[174]  K. Ochi,et al.  ADP-ribosylation of proteins in Bacillus subtilis and its possible importance in sporulation , 1996, Journal of bacteriology.

[175]  F. Hsu,et al.  The PmrAB System-inducing Conditions Control Both Lipid A Remodeling and O-antigen Length Distribution, Influencing the Salmonella Typhimurium-Host Interactions* , 2012, The Journal of Biological Chemistry.

[176]  N. Loman,et al.  An abundance of bacterial ADP-ribosyltransferases--implications for the origin of exotoxins and their human homologues. , 2001, Trends in microbiology.

[177]  T. Unoki,et al.  Contribution of Lipoproteins and Lipoprotein Processing to Endocarditis Virulence in Streptococcus sanguinis , 2009, Journal of bacteriology.

[178]  M. Mann,et al.  The Ser/Thr/Tyr phosphoproteome of Lactococcus lactis IL1403 reveals multiply phosphorylated proteins , 2008, Proteomics.

[179]  Jeffrey W. Smith,et al.  Profiling constitutive proteolytic events in vivo. , 2007, The Biochemical journal.

[180]  S. Arena,et al.  Mapping phosphoproteins in Neisseria meningitidis serogroup A , 2011, Proteomics.

[181]  G. Ordal,et al.  In vitro methylation and demethylation of methyl-accepting chemotaxis proteins in Bacillus subtilis. , 1984, Biochemistry.

[182]  M. Homma,et al.  Targeting of the chemotaxis methylesterase/deamidase CheB to the polar receptor–kinase cluster in an Escherichia coli cell , 2004, Molecular microbiology.

[183]  S. Matsuyama,et al.  Lipoprotein Sorting Signals Evaluated as the LolA-dependent Release of Lipoproteins from the Cytoplasmic Membrane of Escherichia coli * , 2001, The Journal of Biological Chemistry.

[184]  F. Damberger,et al.  Prokaryotic ubiquitin-like protein (Pup) is coupled to substrates via the side chain of its C-terminal glutamate. , 2010, Journal of the American Chemical Society.

[185]  D. Schomburg,et al.  Crystal structure of D-hydantoinase from Bacillus stearothermophilus: insight into the stereochemistry of enantioselectivity. , 2002, Biochemistry.

[186]  T. Henkin,et al.  Control of Acetyl-Coenzyme A Synthetase (AcsA) Activity by Acetylation/Deacetylation without NAD+ Involvement in Bacillus subtilis , 2006, Journal of bacteriology.

[187]  V. Agrawal,et al.  Molecular structure of D-hydantoinase from Bacillus sp. AR9: evidence for mercury inhibition. , 2005, Journal of molecular biology.

[188]  M. Tomita,et al.  Ser/Thr/Tyr phosphoproteome analysis of pathogenic and non‐pathogenic Pseudomonas species , 2009, Proteomics.

[189]  Andreas Tholey,et al.  Mass spectrometry‐based proteomics strategies for protease cleavage site identification , 2012, Proteomics.

[190]  M. Dines,et al.  Acetylation represses the binding of CheY to its target proteins , 2010, Molecular microbiology.

[191]  S. Futaki,et al.  Selective isolation of N-blocked peptide by combining AspN digestion, transamination, and tosylhydrazine glass treatment. , 2011, Analytical biochemistry.

[192]  M. Hunkapiller,et al.  Enzymatic deamidation of methyl-accepting chemotaxis proteins in Escherichia coli catalyzed by the cheB gene product. , 1983, Proceedings of the National Academy of Sciences of the United States of America.

[193]  A. B. Robinson,et al.  Deamidation of asparaginyl residues as a hazard in experimental protein and peptide procedures. , 1971, Analytical biochemistry.

[194]  K. Isono,et al.  Ribosomal protein modification in Escherichia coli. I. A mutant lacking the N-terminal acetylation of protein S5 exhibits thermosensitivity. , 1979, Journal of molecular biology.

[195]  D. Schomburg,et al.  The structure of L-hydantoinase from Arthobacter aurescens leads to an understanding of dihydropyrimidinase substrate and enantio specificity. , 2002, Biochemistry.

[196]  H. Juan,et al.  Phosphoproteomic analysis of Rhodopseudomonas palustris reveals the role of pyruvate phosphate dikinase phosphorylation in lipid production. , 2012, Journal of proteome research.

[197]  I. Sutcliffe,et al.  Impact of lgt mutation on lipoprotein biosynthesis and in vitro phenotypes of Streptococcus agalactiae. , 2009, Microbiology.

[198]  A. Krogh,et al.  Prediction of lipoprotein signal peptides in Gram‐negative bacteria , 2003, Protein science : a publication of the Protein Society.

[199]  Frank Kjeldsen,et al.  Analysis of histidine phosphorylation using tandem MS and ion-electron reactions. , 2007, Analytical chemistry.

[200]  S. Mukherjee,et al.  Bacterial FIC Proteins AMP Up Infection , 2009, Science Signaling.

[201]  L. Kotra,et al.  Insights into class D beta-lactamases are revealed by the crystal structure of the OXA10 enzyme from Pseudomonas aeruginosa. , 2000, Structure.

[202]  Erin E. Carlson,et al.  Activity-based probe for histidine kinase signaling. , 2012, Journal of the American Chemical Society.

[203]  V. Govorun,et al.  The Acylation State of Surface Lipoproteins of Mollicute Acholeplasma laidlawii* , 2011, The Journal of Biological Chemistry.

[204]  A. B. Robinson,et al.  Distribution of glutamine and asparagine residues and their near neighbors in peptides and proteins. , 1991, Proceedings of the National Academy of Sciences of the United States of America.

[205]  T. Muir,et al.  Chasing phosphohistidine, an elusive sibling in the phosphoamino acid family. , 2012, ACS chemical biology.

[206]  Richard J Lamont,et al.  Tyrosine phosphorylation and bacterial virulence , 2012, International Journal of Oral Science.

[207]  Xin Liu,et al.  Mass spectrometry-based glycomics strategy for exploring N-linked glycosylation in eukaryotes and bacteria. , 2006, Analytical chemistry.

[208]  Lei Shi,et al.  Bacterial Protein-Tyrosine Kinases , 2010 .

[209]  P. Karplus,et al.  The crystal structure of urease from Klebsiella aerogenes. , 1995, Science.

[210]  R. Hancock,et al.  The pmrCAB Operon Mediates Polymyxin Resistance in Acinetobacter baumannii ATCC 17978 and Clinical Isolates through Phosphoethanolamine Modification of Lipid A , 2011, Antimicrobial Agents and Chemotherapy.

[211]  Cheng Luo,et al.  Protein cysteine phosphorylation of SarA/MgrA family transcriptional regulators mediates bacterial virulence and antibiotic resistance , 2012, Proceedings of the National Academy of Sciences.

[212]  C. Worby,et al.  The fic domain: regulation of cell signaling by adenylylation. , 2009, Molecular cell.

[213]  N. Dixon,et al.  A Processed Multidomain Mycoplasma hyopneumoniae Adhesin Binds Fibronectin, Plasminogen, and Swine Respiratory Cilia , 2010, The Journal of Biological Chemistry.

[214]  A. Ganesan,et al.  Pseudomonas aeruginosa Exoenzyme S ADP-ribosylates Ras at Multiple Sites* , 1998, The Journal of Biological Chemistry.

[215]  J. A. Gavira,et al.  Structure of dihydropyrimidinase from Sinorhizobium meliloti CECT4114: new features in an amidohydrolase family member. , 2010, Journal of structural biology.

[216]  R. Lan,et al.  A Novel Plasmid-Encoded Serotype Conversion Mechanism through Addition of Phosphoethanolamine to the O-Antigen of Shigella flexneri , 2012, PloS one.

[217]  Xin Liu,et al.  Study of free oligosaccharides derived from the bacterial N-glycosylation pathway , 2009, Proceedings of the National Academy of Sciences.

[218]  F. Sherman,et al.  N-terminal acetyltransferases and sequence requirements for N-terminal acetylation of eukaryotic proteins. , 2003, Journal of molecular biology.

[219]  J. Reilly,et al.  Comprehensive Characterization of Methicillin-resistant Staphylococcus aureus subsp. aureus COL Secretome by Two-dimensional Liquid Chromatography and Mass Spectrometry* , 2010, Molecular & Cellular Proteomics.

[220]  J. Maddock,et al.  Clustering of the Chemoreceptor Complex inEscherichia coli Is Independent of the Methyltransferase CheR and the Methylesterase CheB , 1999, Journal of bacteriology.

[221]  Ann M Stock,et al.  Identification of Methylation Sites in Thermotoga maritima Chemotaxis Receptors , 2006, Journal of bacteriology.

[222]  K. Orth,et al.  A chemical reporter for protein AMPylation. , 2011, Journal of the American Chemical Society.

[223]  G. Wadhams,et al.  Making sense of it all: bacterial chemotaxis , 2004, Nature Reviews Molecular Cell Biology.

[224]  Zhi-ping Zhang,et al.  Purification and characterization of the acetyl-CoA synthetase from Mycobacterium tuberculosis. , 2011, Acta biochimica et biophysica Sinica.

[225]  Yi Zhang,et al.  The First Identification of Lysine Malonylation Substrates and Its Regulatory Enzyme* , 2011, Molecular & Cellular Proteomics.

[226]  M. Piggott,et al.  Focus on phosphoaspartate and phosphoglutamate , 2011, Amino Acids.

[227]  J. Blanchard,et al.  Structure and functions of the GNAT superfamily of acetyltransferases. , 2005, Archives of biochemistry and biophysics.

[228]  B. Wilson,et al.  Pasteurella multocida toxin activation of heterotrimeric G proteins by deamidation , 2009, Proceedings of the National Academy of Sciences.

[229]  H. Nakayama,et al.  Structural evidence of α‐aminoacylated lipoproteins of Staphylococcus aureus , 2011, The FEBS journal.

[230]  Oliver Schilling,et al.  Characterization of the prime and non-prime active site specificities of proteases by proteome-derived peptide libraries and tandem mass spectrometry , 2011, Nature Protocols.

[231]  A. Ganesan,et al.  Pseudomonas aeruginosa Exoenzyme S, a Double ADP-ribosyltransferase, Resembles Vertebrate Mono-ADP-ribosyltransferases* , 1999, The Journal of Biological Chemistry.

[232]  F. Dahlquist,et al.  Sites of deamidation and methylation in Tsr, a bacterial chemotaxis sensory transducer. , 1991, The Journal of biological chemistry.

[233]  S. Bron,et al.  Signal Peptide-Dependent Protein Transport inBacillus subtilis: a Genome-Based Survey of the Secretome , 2000, Microbiology and Molecular Biology Reviews.

[234]  H M Holden,et al.  Molecular structure of dihydroorotase: a paradigm for catalysis through the use of a binuclear metal center. , 2001, Biochemistry.

[235]  V. Kumar,et al.  Carboxylated lysine is required for higher activities in Hydantoinases. , 2011, Protein and peptide letters.

[236]  Kürşad Turgay,et al.  Global impact of protein arginine phosphorylation on the physiology of Bacillus subtilis , 2012, Proceedings of the National Academy of Sciences.

[237]  I. Mijakovic,et al.  Tyrosine-kinases in bacteria: from a matter of controversy to the status of key regulatory enzymes , 2009, Amino Acids.

[238]  A. Penyige,et al.  ADP-ribosylation of membrane proteins of Streptomyces griseus strain 52-1. , 1990, FEMS microbiology letters.

[239]  H. Tokuda,et al.  Model of mouth-to-mouth transfer of bacterial lipoproteins through inner membrane LolC, periplasmic LolA, and outer membrane LolB , 2009, Proceedings of the National Academy of Sciences.

[240]  Jianping Xie,et al.  Roles and underlying mechanisms of ESAT-6 in the context of Mycobacterium tuberculosis-host interaction from a systems biology perspective. , 2012, Cellular signalling.

[241]  Rv0802c from Mycobacterium tuberculosis: the first structure of a succinyltransferase with the GNAT fold. , 2008, Acta crystallographica. Section F, Structural biology and crystallization communications.

[242]  Nichollas E. Scott,et al.  Simultaneous Glycan-Peptide Characterization Using Hydrophilic Interaction Chromatography and Parallel Fragmentation by CID, Higher Energy Collisional Dissociation, and Electron Transfer Dissociation MS Applied to the N-Linked Glycoproteome of Campylobacter jejuni* , 2010, Molecular & Cellular Proteomics.

[243]  F. Raushel,et al.  Three-dimensional structure of the binuclear metal center of phosphotriesterase. , 1995, Biochemistry.

[244]  K. Khoo,et al.  Phosphoproteomics of Klebsiella pneumoniae NTUH-K2044 Reveals a Tight Link between Tyrosine Phosphorylation and Virulence* , 2009, Molecular & Cellular Proteomics.

[245]  S. Mobashery,et al.  Activation of BlaR1 Protein of Methicillin-resistant Staphylococcus aureus, Its Proteolytic Processing, and Recovery from Induction of Resistance* , 2011, The Journal of Biological Chemistry.

[246]  Nichollas E. Scott,et al.  Mass spectrometric characterization of the surface-associated 42 kDa lipoprotein JlpA as a glycosylated antigen in strains of Campylobacter jejuni. , 2009, Journal of proteome research.

[247]  J. Blanchard,et al.  A bacterial acetyltransferase capable of regioselective N-acetylation of antibiotics and histones. , 2004, Chemistry & biology.

[248]  S. Mobashery,et al.  Dissection of events in the resistance to β-lactam antibiotics mediated by the protein BlaR1 from Staphylococcus aureus. , 2012, Biochemistry.

[249]  H. Nothaft,et al.  Protein glycosylation in bacteria: sweeter than ever , 2010, Nature Reviews Microbiology.

[250]  Thierry Meinnel,et al.  The Proteomics of N-terminal Methionine Cleavage*S , 2006, Molecular & Cellular Proteomics.

[251]  Yunqing Liu,et al.  Crystal Structure of d-Hydantoinase from Burkholderia pickettii at a Resolution of 2.7 Angstroms: Insights into the Molecular Basis of Enzyme Thermostability , 2003, Journal of bacteriology.

[252]  S. Hubbard,et al.  Molecular analysis of the prokaryotic ubiquitin‐like protein (Pup) conjugation pathway in Mycobacterium tuberculosis , 2010, Molecular microbiology.

[253]  R. Fleischmann,et al.  Widespread Occurrence of Non-Enzymatic Deamidations of Asparagine Residues in Yersinia pestis Proteins Resulting from Alkaline pH Membrane Extraction Conditions. , 2008, The open proteomics journal.

[254]  Cyrille L. Delley,et al.  Activity of the Mycobacterial Proteasomal ATPase Mpa Is Reversibly Regulated by Pupylation* , 2011, The Journal of Biological Chemistry.

[255]  N. Hooper Proteases: a primer. , 2002, Essays in biochemistry.

[256]  J. Armitage,et al.  Protein dynamics and mechanisms controlling the rotational behaviour of the bacterial flagellar motor. , 2011, Current opinion in microbiology.

[257]  J. M. Dow,et al.  The Acylation and Phosphorylation Pattern of Lipid A from Xanthomonas Campestris Strongly Influence its Ability to Trigger the Innate Immune Response in Arabidopsis , 2008, Chembiochem : a European journal of chemical biology.

[258]  P. Rice,et al.  An oxidation-sensing mechanism is used by the global regulator MgrA in Staphylococcus aureus , 2006, Nature chemical biology.

[259]  M. Mann,et al.  Global, In Vivo, and Site-Specific Phosphorylation Dynamics in Signaling Networks , 2006, Cell.

[260]  J. Tobias,et al.  Universality and structure of the N-end rule. , 1989, The Journal of biological chemistry.

[261]  C. Szymanski,et al.  Campylobacter Protein Glycosylation Affects Host Cell Interactions , 2002, Infection and Immunity.

[262]  A. B. Robinson,et al.  Rates of nonenzymatic deamidation of glutaminyl and asparaginyl residues in pentapeptides. , 1973, Journal of the American Chemical Society.

[263]  William Wiley Navarre,et al.  Surface Proteins of Gram-Positive Bacteria and Mechanisms of Their Targeting to the Cell Wall Envelope , 1999, Microbiology and Molecular Biology Reviews.

[264]  Zhao‐Qing Luo,et al.  Legionella pneumophila SidD is a deAMPylase that modifies Rab1 , 2011, Nature.

[265]  I. Sutcliffe,et al.  Lipoproteins of gram-positive bacteria , 1995, Journal of bacteriology.

[266]  T. Palmer,et al.  Dissecting the complete lipoprotein biogenesis pathway in Streptomyces scabies , 2011, Molecular microbiology.

[267]  P. Gehrig,et al.  Identification of Apolipoprotein N-Acyltransferase (Lnt) in Mycobacteria* , 2009, The Journal of Biological Chemistry.

[268]  S. Chevalier,et al.  The prolipoprotein diacylglyceryl transferase (Lgt) of Enterococcus faecalis contributes to virulence. , 2012, Microbiology.

[269]  D. Missiakas,et al.  A new oxidative sensing and regulation pathway mediated by the MgrA homologue SarZ in Staphylococcus aureus , 2009, Molecular microbiology.

[270]  H. Scheraga,et al.  Deamidation of the asparaginyl-glycyl sequence. , 2009, International journal of peptide and protein research.

[271]  G. Charron,et al.  Lipidation by the Host Prenyltransferase Machinery Facilitates Membrane Localization of Legionella pneumophila Effector Proteins* , 2010, The Journal of Biological Chemistry.

[272]  Ivan Mijakovic,et al.  Bacterial tyrosine kinases: evolution, biological function and structural insights , 2012, Philosophical Transactions of the Royal Society B: Biological Sciences.

[273]  T. Cullen,et al.  A link between the assembly of flagella and lipooligosaccharide of the Gram-negative bacterium Campylobacter jejuni , 2010, Proceedings of the National Academy of Sciences.

[274]  D. Becher,et al.  Involvement of protein acetylation in glucose‐induced transcription of a stress‐responsive promoter , 2011, Molecular microbiology.

[275]  M. Sutter,et al.  Dop functions as a depupylase in the prokaryotic ubiquitin‐like modification pathway , 2010, EMBO reports.

[276]  O. Jensen,et al.  Phosphoproteome analysis of Streptomyces development reveals extensive protein phosphorylation accompanying bacterial differentiation. , 2011, Journal of proteome research.

[277]  S. Mobashery,et al.  Lysine N(zeta)-decarboxylation in the BlaR1 protein from Staphylococcus aureus at the root of its function as an antibiotic sensor. , 2007, Journal of the American Chemical Society.

[278]  F. Dahlquist,et al.  Multiple covalent modifications of Trg, a sensory transducer of Escherichia coli. , 1983, The Journal of biological chemistry.

[279]  P. Andrews,et al.  Profiling the alkaline membrane proteome of Caulobacter crescentus with two‐dimensional electrophoresis and mass spectrometry , 2002, Proteomics.

[280]  C. Rubens,et al.  Characterization of the Accessory Sec System of Staphylococcus aureus , 2008, Journal of bacteriology.

[281]  J. Abrahams,et al.  Involvement of a carboxylated lysine in UV damage endonuclease , 2009, Protein science : a publication of the Protein Society.