Radioxenon production through neutron irradiation of stable xenon gas
暂无分享,去创建一个
The Spectral Deconvolution Analysis Tool (SDAT) software was developed to improve counting statistics and detection limits for nuclear explosion radionuclide measurements. SDAT utilizes spectral deconvolution spectroscopy techniques and can analyze both β–γ coincidence spectra for radioxenon isotopes and high-resolution HPGe spectra from aerosol monitors. The deconvolution algorithm of the SDAT requires a library of β–γ coincidence spectra of individual radioxenon isotopes to determine isotopic ratios in a sample. In order to get experimentally produced spectra of the individual isotopes, we have irradiated enriched samples of 130Xe, 132Xe, and 134Xe gas with a neutron beam from the TRIGA reactor at The University of Texas. The samples were counted in an Automated Radioxenon Sampler/Analyzer (ARSA) style β–γ coincidence detector. The spectra produced show that this method of radioxenon production yields samples with very high purity of the individual isotopes for 131mXe and 135Xe and a sample with a substantial 133mXe to 133Xe ratio.