An adaptive high-order hybrid scheme for compressive, viscous flows with detailed chemistry

A hybrid weighted essentially non-oscillatory (WENO)/centered-difference numerical method, with low numerical dissipation, high-order shock-capturing, and structured adaptive mesh refinement (SAMR), has been developed for the direct numerical simulation of the multicomponent, compressible, reactive Navier–Stokes equations. The method enables accurate resolution of diffusive processes within reaction zones. The approach combines time-split reactive source terms with a high-order, shock-capturing scheme specifically designed for diffusive flows. A description of the order-optimized, symmetric, finite difference, flux-based, hybrid WENO/centered-difference scheme is given, along with its implementation in a high-order SAMR framework. The implementation of new techniques for discontinuity flagging, scheme-switching, and high-order prolongation and restriction is described. In particular, the refined methodology does not require upwinded WENO at grid refinement interfaces for stability, allowing high-order prolongation and thereby eliminating a significant source of numerical diffusion within the overall code performance. A series of one-and two-dimensional test problems is used to verify the implementation, specifically the high-order accuracy of the diffusion terms. One-dimensional benchmarks include a viscous shock wave and a laminar flame. In two-space dimensions, a Lamb–Oseen vortex and an unstable diffusive detonation are considered, for which quantitative convergence is demonstrated. Further, a two-dimensional high-resolution simulation of a reactive Mach reflection phenomenon with diffusive multi-species mixing is presented.

[1]  G. M. Ward,et al.  A hybrid, center-difference, limiter method for simulations of compressible multicomponent flows with Mie-Grüneisen equation of state , 2010, J. Comput. Phys..

[2]  Ralf Deiterding,et al.  High-resolution Simulation of Detonations with Detailed Chemistry , 2005 .

[3]  Hans G. Hornung,et al.  Reactant Jetting in Unstable Detonation , 2009 .

[4]  P. Rentrop,et al.  Generalized Runge-Kutta methods of order four with stepsize control for stiff ordinary differential equations , 1979 .

[5]  CostaBruno,et al.  High order Hybrid central-WENO finite difference scheme for conservation laws , 2007 .

[6]  R. Deiterding A parallel adaptive method for simulating shock-induced combustion with detailed chemical kinetics in complex domains , 2009 .

[7]  M. Carpenter,et al.  Several new numerical methods for compressible shear-layer simulations , 1994 .

[8]  V. Gregory Weirs,et al.  A bandwidth-optimized WENO scheme for the effective direct numerical simulation of compressible turbulence , 2006, J. Comput. Phys..

[9]  Ralf Deiterding,et al.  Detonation Structure Simulation with AMROC , 2005, HPCC.

[10]  Gabi Ben-Dor,et al.  The wall-jetting effect in Mach reflection: Navier–Stokes simulations , 2004, Journal of Fluid Mechanics.

[11]  Daniel F. Martin,et al.  High-order finite-volume adaptive methods on locally rectangular grids , 2009 .

[12]  Joseph E. Shepherd,et al.  Direct observations of reaction zone structure in propagating detonations , 2003 .

[13]  W. Don,et al.  High order Hybrid central-WENO finite difference scheme for conservation laws , 2007 .

[14]  Maolin Tang A Hybrid , 2010 .

[15]  D. Pullin,et al.  Hybrid tuned center-difference-WENO method for large eddy simulations in the presence of strong shocks , 2004 .

[16]  Chi-Wang Shu,et al.  Efficient Implementation of Weighted ENO Schemes , 1995 .

[17]  Paul E. Dimotakis,et al.  Large-eddy simulation of mixing in a recirculating shear flow , 2010, Journal of Fluid Mechanics.

[18]  Rong Wang,et al.  Linear Instability of the Fifth-Order WENO Method , 2007, SIAM J. Numer. Anal..

[19]  James J. Quirk,et al.  The role of unsteadiness in direct initiation of gaseous detonations , 2000, Journal of Fluid Mechanics.

[20]  David F. Griffiths,et al.  The stability of explicit Euler time‐integration for certain finite difference approximations of the multi‐dimensional advection–diffusion equation , 1984 .

[21]  S. Balachandar,et al.  A massively parallel multi-block hybrid compact-WENO scheme for compressible flows , 2009, J. Comput. Phys..

[22]  Johan Larsson,et al.  Stability criteria for hybrid difference methods , 2008, J. Comput. Phys..

[23]  Wai-Sun Don,et al.  An improved weighted essentially non-oscillatory scheme for hyperbolic conservation laws , 2008, J. Comput. Phys..

[24]  Chi-Wang Shu,et al.  High Order Strong Stability Preserving Time Discretizations , 2009, J. Sci. Comput..

[25]  J. M. Powers,et al.  Mapped weighted essentially non-oscillatory schemes: Achieving optimal order near critical points , 2005 .

[26]  Ronald Fedkiw,et al.  High Accuracy Numerical Methods for Thermally Perfect Gas Flows with Chemistry , 1997 .

[27]  G. Pedrizzetti,et al.  Vortex Dynamics , 2011 .

[28]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[29]  Charles K. Westbrook,et al.  Chemical kinetics of hydrocarbon oxidation in gaseous detonations , 1982 .

[30]  G. Ben-Dor,et al.  A reconsideration of the three-shock theory for a pseudo-steady Mach reflection , 1987, Journal of Fluid Mechanics.

[31]  Sergio Pirozzoli,et al.  Conservative Hybrid Compact-WENO Schemes for Shock-Turbulence Interaction , 2002 .

[32]  Ralf Deiterding,et al.  A virtual test facility for simulating detonation- and shock-induced deformation and fracture of thin flexible shells , 2007 .

[33]  Ralf Deiterding,et al.  A virtual test facility for the efficient simulation of solid material response under strong shock and detonation wave loading , 2006, Engineering with Computers.

[34]  Gerald Warnecke,et al.  Analysis and Numerics for Conservation Laws , 2005 .

[35]  P. Colella,et al.  Local adaptive mesh refinement for shock hydrodynamics , 1989 .

[36]  Tao Pang,et al.  An Introduction to Computational Physics , 1997 .

[37]  Ralf Deiterding,et al.  A low-numerical dissipation, patch-based adaptive-mesh-refinement method for large-eddy simulation of compressible flows , 2006 .

[38]  M. Lombardini,et al.  Richtmyer-Meshkov Instability in Converging Geometries , 2008 .

[39]  Ralf Deiterding,et al.  Parallel adaptive simulation of multi-dimensional detonation structures , 2003 .

[40]  Patrick Knupp,et al.  Verification of Computer Codes in Computational Science and Engineering , 2002 .

[41]  R. J. Kee,et al.  Chemkin-II : A Fortran Chemical Kinetics Package for the Analysis of Gas Phase Chemical Kinetics , 1991 .

[42]  Chi-Wang Shu,et al.  Monotonicity Preserving Weighted Essentially Non-oscillatory Schemes with Increasingly High Order of Accuracy , 2000 .

[43]  Ronald Fedkiw,et al.  Numerical resolution of pulsating detonation waves , 2000 .

[44]  Ralf Deiterding,et al.  Detonation front structure and the competition for radicals , 2007 .

[45]  Joseph E. Shepherd,et al.  Detonation in gases , 2009 .

[46]  S. Lele Compact finite difference schemes with spectral-like resolution , 1992 .

[47]  Ronald K. Hanson,et al.  The ignition mechanism in irregular structure gaseous detonations , 2005 .

[48]  Elaine S. Oran,et al.  The interaction of high-speed turbulence with flames: Global properties and internal flame structure , 2009, 1106.3699.

[49]  H. Kreiss,et al.  Time-Dependent Problems and Difference Methods , 1996 .

[50]  Chung King Law,et al.  The hydrodynamic structure of unstable cellular detonations , 2007, Journal of Fluid Mechanics.

[51]  Marco Arienti,et al.  The role of diffusion at shear layers in irregular detonations , 2005 .

[52]  Parviz Moin,et al.  Higher entropy conservation and numerical stability of compressible turbulence simulations , 2004 .

[53]  Luca Massa,et al.  Triple point shear-layers in gaseous detonation waves , 2006 .

[54]  D. I. Pullin,et al.  Small-amplitude perturbations in the three-dimensional cylindrical Richtmyer–Meshkov instability , 2009 .

[55]  William J. Rider,et al.  A quantitative comparison of numerical methods for the compressible Euler equations: fifth-order WENO and piecewise-linear Godunov , 2004 .

[56]  Sukumar Chakravarthy,et al.  High Resolution Schemes and the Entropy Condition , 1984 .

[57]  Chi-Wang Shu Essentially non-oscillatory and weighted essentially non-oscillatory schemes for hyperbolic conservation laws , 1998 .

[58]  Nikolaus A. Adams,et al.  A High-Resolution Hybrid Compact-ENO Scheme for Shock-Turbulence Interaction Problems , 1996 .

[59]  V. Gregory Weirs,et al.  Optimization of weighted ENO schemes for DNS of compressible turbulence , 1997 .

[60]  Elaine S. Oran,et al.  Simulations of flame acceleration and deflagration-to-detonation transitions in methane–air systems , 2010 .

[61]  Ralf Deiterding,et al.  Construction and Application of an AMR Algorithm for Distributed Memory Computers , 2005 .

[62]  Joseph E. Shepherd,et al.  Reaction zones in highly unstable detonations , 2005 .

[63]  R. LeVeque Finite Volume Methods for Hyperbolic Problems: Characteristics and Riemann Problems for Linear Hyperbolic Equations , 2002 .

[64]  De-kang Mao,et al.  Towards front-tracking based on conservation in two space dimensions II, tracking discontinuities in capturing fashion , 2007, J. Comput. Phys..

[65]  Carlos Pantano,et al.  A class of energy stable, high-order finite-difference interface schemes suitable for adaptive mesh refinement of hyperbolic problems , 2007, J. Comput. Phys..

[66]  Chi-Wang Shu,et al.  Total variation diminishing Runge-Kutta schemes , 1998, Math. Comput..

[67]  Tariq D. Aslam,et al.  Simulations of pulsating one-dimensional detonations with true fifth order accuracy , 2006, J. Comput. Phys..

[68]  Sanjiva K. Lele,et al.  Direct numerical simulations of canonical shock/turbulence interaction , 2008, Proceeding of Sixth International Symposium on Turbulence and Shear Flow Phenomena.

[69]  M. Berger,et al.  Adaptive mesh refinement for hyperbolic partial differential equations , 1982 .

[70]  Robert K. Cheng,et al.  Cellular burning in lean premixed turbulent hydrogen-air flames: Coupling experimental and computational analysis at the laboratory scale , 2009 .