The Hippo pathway component Wwc2 is a key regulator of embryonic development and angiogenesis in mice

[1]  Alexander W. Bruce,et al.  Wwc2 Is a Novel Cell Division Regulator During Preimplantation Mouse Embryo Lineage Formation and Oogenesis , 2019, bioRxiv.

[2]  W. Dean,et al.  Mechanisms of early placental development in mouse and humans , 2019, Nature Reviews Genetics.

[3]  Do Young Hyeon,et al.  CCN1 interlinks integrin and hippo pathway to autoregulate tip cell activity , 2019, eLife.

[4]  K. Guan,et al.  The Hippo Pathway: Biology and Pathophysiology. , 2019, Annual review of biochemistry.

[5]  Xiaolong Yang,et al.  The Role of YAP and TAZ in Angiogenesis and Vascular Mimicry , 2019, Cells.

[6]  W. Hong,et al.  Role of Hippo Pathway-YAP/TAZ Signaling in Angiogenesis , 2019, Front. Cell Dev. Biol..

[7]  Heping Wang,et al.  The endothelial tip-stalk cell selection and shuffling during angiogenesis , 2019, Journal of Cell Communication and Signaling.

[8]  Andrew J. Hill,et al.  The single cell transcriptional landscape of mammalian organogenesis , 2019, Nature.

[9]  K. Irvine,et al.  The Hippo Signaling Network and Its Biological Functions. , 2018, Annual review of genetics.

[10]  M. Hemberger,et al.  Regulation of Placental Development and Its Impact on Fetal Growth—New Insights From Mouse Models , 2018, Front. Endocrinol..

[11]  Xuelian Luo,et al.  Activation mechanisms of the Hippo kinase signaling cascade , 2018, Bioscience reports.

[12]  M. Pelajo‐Machado,et al.  Mechanism of hematopoiesis and vasculogenesis in mouse placenta. , 2018, Placenta.

[13]  M. Sudol,et al.  WW and C2 domain–containing proteins regulate hepatic cell differentiation and tumorigenesis through the hippo signaling pathway , 2018, Hepatology.

[14]  J. Park,et al.  Hippo-YAP/TAZ signaling in angiogenesis , 2018, BMB reports.

[15]  Jacqueline K. White,et al.  Placentation defects are highly prevalent in embryonic lethal mouse mutants , 2018, Nature.

[16]  L. Laurent,et al.  Comparative analysis of mouse and human placentae across gestation reveals species-specific regulators of placental development , 2018, Development.

[17]  Kun-Liang Guan,et al.  The Hippo pathway in organ development, homeostasis, and regeneration. , 2017, Current opinion in cell biology.

[18]  Y. Odaka,et al.  YAP/TAZ-CDC42 signaling regulates vascular tip cell migration , 2017, Proceedings of the National Academy of Sciences.

[19]  R. Jain,et al.  YAP/TAZ Orchestrate VEGF Signaling during Developmental Angiogenesis. , 2017, Developmental cell.

[20]  D. Lim,et al.  YAP/TAZ regulates sprouting angiogenesis and vascular barrier maturation. , 2017, The Journal of clinical investigation.

[21]  Dean Y. Li,et al.  Placental labyrinth formation in mice requires endothelial FLRT2/UNC5B signaling , 2017, Development.

[22]  J. Kissil,et al.  Regulation of localization and function of the transcriptional co-activator YAP by angiomotin , 2017, eLife.

[23]  R. Sandberg,et al.  Position- and Hippo signaling-dependent plasticity during lineage segregation in the early mouse embryo , 2017, eLife.

[24]  H. Sasaki Roles and regulations of Hippo signaling during preimplantation mouse development , 2017, Development, growth & differentiation.

[25]  M. Santoro,et al.  “Decoding” Angiogenesis: New Facets Controlling Endothelial Cell Behavior , 2016, Front. Physiol..

[26]  M. Affolter,et al.  Cell behaviors and dynamics during angiogenesis , 2016, Development.

[27]  Yojiro Yamanaka,et al.  Lineage specification in the mouse preimplantation embryo , 2016, Development.

[28]  Kun-Liang Guan,et al.  Mechanisms of Hippo pathway regulation , 2016, Genes & development.

[29]  K. Harvey,et al.  Control of organ growth by patterning and hippo signaling in Drosophila. , 2015, Cold Spring Harbor perspectives in biology.

[30]  C. Dieterich,et al.  A Grhl2-dependent gene network controls trophoblast branching morphogenesis , 2015, Development.

[31]  M. Gertsenstein Mouse embryos' fusion for the tetraploid complementation assay. , 2015, Methods in molecular biology.

[32]  W. Huber,et al.  Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2 , 2014, Genome Biology.

[33]  Richard A. Lang,et al.  HIPPO Pathway Members Restrict SOX2 to the Inner Cell Mass Where It Promotes ICM Fates in the Mouse Blastocyst , 2014, PLoS genetics.

[34]  S. Butz,et al.  Esm1 Modulates Endothelial Tip Cell Behavior and Vascular Permeability by Enhancing VEGF Bioavailability , 2014, Circulation research.

[35]  Paul Theodor Pyl,et al.  HTSeq—a Python framework to work with high-throughput sequencing data , 2014, bioRxiv.

[36]  D. Wennmann,et al.  KIBRA: In the brain and beyond. , 2014, Cellular signalling.

[37]  S. Weiss,et al.  A Snail1/Notch1 Signaling Axis Controls Embryonic Vascular Development , 2014, Nature Communications.

[38]  D. McCollum,et al.  Angiomotins link F-actin architecture to Hippo pathway signaling , 2014, Molecular biology of the cell.

[39]  Björn Usadel,et al.  Trimmomatic: a flexible trimmer for Illumina sequence data , 2014, Bioinform..

[40]  H. Pavenstädt,et al.  Evolutionary and molecular facts link the WWC protein family to Hippo signaling. , 2014, Molecular biology and evolution.

[41]  Armin Schneider,et al.  KIBRA (KIdney/BRAin protein) regulates learning and memory and stabilizes Protein kinase Mζ , 2014, Journal of neurochemistry.

[42]  Kazuhiro Chida,et al.  Polarity-Dependent Distribution of Angiomotin Localizes Hippo Signaling in Preimplantation Embryos , 2013, Current Biology.

[43]  Domenico Ribatti,et al.  "Sprouting angiogenesis", a reappraisal. , 2012, Developmental biology.

[44]  Satoshi O. Suzuki,et al.  Cancer susceptibility and embryonic lethality in Mob1a/1b double-mutant mice. , 2012, The Journal of clinical investigation.

[45]  B. Huppertz The placenta: transcriptional, epigenetic, and physiological integration during development , 2012 .

[46]  Steven L Salzberg,et al.  Fast gapped-read alignment with Bowtie 2 , 2012, Nature Methods.

[47]  R. Behringer,et al.  Early Embryonic Lethality in Genetically Engineered Mice: Diagnosis and Phenotypic Analysis , 2012, Veterinary pathology.

[48]  S. Elmore,et al.  Pathology Methods for the Evaluation of Embryonic and Perinatal Developmental Defects and Lethality in Genetically Engineered Mice , 2012, Veterinary pathology.

[49]  Hiroshi Hamada,et al.  Cell fate decisions and axis determination in the early mouse embryo , 2012, Development.

[50]  L. Silverton Making the right choices. , 2012, Midwives.

[51]  Laure Gambardella,et al.  A Computational Tool for Quantitative Analysis of Vascular Networks , 2011, PloS one.

[52]  Heng Li,et al.  A statistical framework for SNP calling, mutation discovery, association mapping and population genetical parameter estimation from sequencing data , 2011, Bioinform..

[53]  R. Huganir,et al.  Regulation of AMPA Receptor Function by the Human Memory-Associated Gene KIBRA , 2011, Neuron.

[54]  R. Kalluri,et al.  Notch in Tip and Stalk Cell Selection , 2011 .

[55]  H. Gerhardt,et al.  Endothelial cells dynamically compete for the tip cell position during angiogenic sprouting , 2010, Nature Cell Biology.

[56]  R. Adams,et al.  Inducible gene targeting in the neonatal vasculature and analysis of retinal angiogenesis in mice , 2010, Nature Protocols.

[57]  S. Fisher,et al.  The placenta: transcriptional, epigenetic, and physiological integration during development. , 2010, The Journal of clinical investigation.

[58]  J. Rossant,et al.  Making the blastocyst: lessons from the mouse. , 2010, The Journal of clinical investigation.

[59]  Y. Kong,et al.  Crucial Role for Mst1 and Mst2 Kinases in Early Embryonic Development of the Mouse , 2009, Molecular and Cellular Biology.

[60]  R. Adams,et al.  DLL1-mediated Notch activation regulates endothelial identity in mouse fetal arteries. , 2009, Blood.

[61]  Janet Rossant,et al.  The Hippo signaling pathway components Lats and Yap pattern Tead4 activity to distinguish mouse trophectoderm from inner cell mass. , 2009, Developmental cell.

[62]  Y. Kong,et al.  A crucial role of WW45 in developing epithelial tissues in the mouse , 2008, The EMBO journal.

[63]  C. Gheorghe,et al.  Gene Expression Patterns in the Developing Murine Placenta , 2006, The Journal of the Society for Gynecologic Investigation: JSGI.

[64]  T. Magnuson,et al.  Defects in Yolk Sac Vasculogenesis, Chorioallantoic Fusion, and Embryonic Axis Elongation in Mice with Targeted Disruption of Yap65 , 2006, Molecular and Cellular Biology.

[65]  L. Holmgren,et al.  Angiomotin Regulates Endothelial Cell-Cell Junctions and Cell Motility* , 2005, Journal of Biological Chemistry.

[66]  A. Cooney,et al.  Differential Oocyte-Specific Expression of Cre Recombinase Activity in GDF-9-iCre, Zp3cre, and Msx2Cre Transgenic Mice1 , 2004, Biology of reproduction.

[67]  B. Bruneau,et al.  Lats2/Kpm is required for embryonic development, proliferation control and genomic integrity , 2004, The EMBO journal.

[68]  D. Samson Biology and Pathophysiology , 2004 .

[69]  V. Luria,et al.  Maternally expressed PGK-Cre transgene as a tool for early and uniform activation of the Cre site-specific recombinase , 1998, Transgenic Research.

[70]  J. Rossant,et al.  Vascular development and patterning: making the right choices. , 2003, Current opinion in genetics & development.

[71]  K. Alitalo,et al.  VEGF guides angiogenic sprouting utilizing endothelial tip cell filopodia , 2003, The Journal of cell biology.

[72]  J. Rossant,et al.  Placental development: Lessons from mouse mutants , 2001, Nature Reviews Genetics.

[73]  J. Biggers,et al.  IVF of mouse ova in a simplex optimized medium supplemented with amino acids. , 2000, Human reproduction.

[74]  J. Roder,et al.  Derivation of completely cell culture-derived mice from early-passage embryonic stem cells. , 1993, Proceedings of the National Academy of Sciences of the United States of America.