Generalized mean for feature extraction in one-class classification problems

Biased discriminant analysis (BDA), which extracts discriminative features for one-class classification problems, is sensitive to outliers in negative samples. This study focuses on the drawback of BDA attributed to the objective function based on the arithmetic mean in one-class classification problems, and proposes an objective function based on a generalized mean. A novel method is also presented to effectively maximize the objective function. The experimental results show that the proposed method provides better discriminative features than the BDA and its variants.

[1]  Welch Bl THE GENERALIZATION OF ‘STUDENT'S’ PROBLEM WHEN SEVERAL DIFFERENT POPULATION VARLANCES ARE INVOLVED , 1947 .

[2]  Klaus-Robert Müller,et al.  Feature Extraction for One-Class Classification , 2003, ICANN.

[3]  Aleix M. Martínez,et al.  Subclass discriminant analysis , 2006, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[4]  D. S. Jones,et al.  Elementary information theory , 1979 .

[5]  David G. Luenberger,et al.  Linear and nonlinear programming , 1984 .

[6]  Keinosuke Fukunaga,et al.  Introduction to statistical pattern recognition (2nd ed.) , 1990 .

[7]  Thomas S. Huang,et al.  Small sample learning during multimedia retrieval using BiasMap , 2001, Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. CVPR 2001.

[8]  Robert P. W. Duin,et al.  Linear dimensionality reduction via a heteroscedastic extension of LDA: the Chernoff criterion , 2004, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[9]  Bill Triggs,et al.  Histograms of oriented gradients for human detection , 2005, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05).

[10]  Xuelong Li,et al.  General Averaged Divergence Analysis , 2007, Seventh IEEE International Conference on Data Mining (ICDM 2007).

[11]  Paul A. Viola,et al.  Robust Real-Time Face Detection , 2001, Proceedings Eighth IEEE International Conference on Computer Vision. ICCV 2001.

[12]  Anil K. Jain,et al.  Statistical Pattern Recognition: A Review , 2000, IEEE Trans. Pattern Anal. Mach. Intell..

[13]  P. Bullen Handbook of means and their inequalities , 1987 .

[14]  David J. Kriegman,et al.  Eigenfaces vs. Fisherfaces: Recognition Using Class Specific Linear Projection , 1996, ECCV.

[15]  Hyeonjoon Moon,et al.  The FERET Evaluation Methodology for Face-Recognition Algorithms , 2000, IEEE Trans. Pattern Anal. Mach. Intell..

[16]  J. Friedman Regularized Discriminant Analysis , 1989 .

[17]  Chong-Ho Choi,et al.  A New Biased Discriminant Analysis Using Composite Vectors for Eye Detection , 2008, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics).

[18]  Bernt Schiele,et al.  Analyzing contour and appearance based methods for object categorization , 2003, CVPR 2003.

[19]  Hakan Cevikalp,et al.  Discriminative common vectors for face recognition , 2005, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[20]  Xuelong Li,et al.  Direct kernel biased discriminant analysis: a new content-based image retrieval relevance feedback algorithm , 2006, IEEE Transactions on Multimedia.

[21]  Terence Sim,et al.  Discriminant Subspace Analysis: A Fukunaga-Koontz Approach , 2007, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[22]  Aleix M. Martínez,et al.  Bayes Optimality in Linear Discriminant Analysis , 2008, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[23]  Andrew R. Webb,et al.  Statistical Pattern Recognition , 1999 .

[24]  Audra E. Kosh,et al.  Linear Algebra and its Applications , 1992 .

[25]  Ja-Chen Lin,et al.  A new LDA-based face recognition system which can solve the small sample size problem , 1998, Pattern Recognit..

[26]  Keinosuke Fukunaga,et al.  Introduction to Statistical Pattern Recognition , 1972 .

[27]  Bernt Schiele,et al.  Analyzing appearance and contour based methods for object categorization , 2003, 2003 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2003. Proceedings..

[28]  Xuelong Li,et al.  Geometric Mean for Subspace Selection , 2009, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[29]  Shigeo Abe DrEng Pattern Classification , 2001, Springer London.

[30]  Nojun Kwak,et al.  Principal Component Analysis Based on L1-Norm Maximization , 2008, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[31]  Narendra Ahuja,et al.  Detecting Faces in Images: A Survey , 2002, IEEE Trans. Pattern Anal. Mach. Intell..

[32]  Aleix M. Martínez,et al.  Where are linear feature extraction methods applicable? , 2005, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[33]  David G. Stork,et al.  Pattern Classification , 1973 .

[34]  Dacheng Tao,et al.  Harmonic mean for subspace selection , 2008, 2008 19th International Conference on Pattern Recognition.

[35]  Robert P. W. Duin,et al.  Multiclass Linear Dimension Reduction by Weighted Pairwise Fisher Criteria , 2001, IEEE Trans. Pattern Anal. Mach. Intell..

[36]  James M. Rehg,et al.  Fast Asymmetric Learning for Cascade Face Detection , 2008, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[37]  Stephen P. Boyd,et al.  Convex Optimization , 2004, Algorithms and Theory of Computation Handbook.

[38]  Ravi Kothari,et al.  Fractional-Step Dimensionality Reduction , 2000, IEEE Trans. Pattern Anal. Mach. Intell..