The POU-specific domain of Pit-1 is essential for sequence-specific, high affinity DNA binding and DNA-dependent Pit-1—Pit-1 interactions

[1]  M. Treacy,et al.  Characterisation of tissue-specific trans-acting factor binding to a proximal element in the rat growth hormone gene promoter. , 1990, European journal of biochemistry.

[2]  S. R. Fox,et al.  The homeodomain protein, Pit-1/GHF-1, is capable of binding to and activating cell-specific elements of both the growth hormone and prolactin gene promoters. , 1990, Molecular endocrinology.

[3]  W. A. Johnson,et al.  Binding of a Drosophila POU-domain protein to a sequence element regulating gene expression in specific dopaminergic neurons , 1990, Nature.

[4]  M. Rosenfeld,et al.  A two-base change in a POU factor-binding site switches pituitary-specific to lymphoid-specific gene expression. , 1990, Genes & development.

[5]  M. Karin,et al.  Dissection of functional domains of the pituitary-specific transcription factor GHF-1 , 1989, Nature.

[6]  D. Swinbanks Blood donors to be screened , 1989, Nature.

[7]  C. Glass,et al.  Positive and negative regulation of gene transcription by a retinoic acid-thyroid hormone receptor heterodimer , 1989, Cell.

[8]  N. Webster,et al.  The human estrogen receptor has two independent nonacidic transcriptional activation functions , 1989, Cell.

[9]  Pierre Gönczy,et al.  A single amino acid can determine the DNA binding specificity of homeodomain proteins , 1989, Cell.

[10]  W. Herr,et al.  The Oct-1 homoeodomain directs formation of a multiprotein-DNA complex with the HSV transactivator VP16 , 1989, Nature.

[11]  P. Sharp,et al.  The Oct-2 protein binds cooperatively to adjacent octamer sites. , 1989, Genes & development.

[12]  A. Coulson,et al.  Caenorhabditis elegans has scores of homoeobox-containing genes , 1989, Nature.

[13]  E. A. O'neill,et al.  The proline-rich transcriptional activator of CTF/NF-I is distinct from the replication and DNA binding domain , 1989, Cell.

[14]  M. Scott,et al.  The structure and function of the homeodomain. , 1989, Biochimica et biophysica acta.

[15]  R. Tjian,et al.  Transcriptional regulation in mammalian cells by sequence-specific DNA binding proteins. , 1989, Science.

[16]  L. Swanson,et al.  Expression of a large family of POU-domain regulatory genes in mammalian brain development , 1989, Nature.

[17]  M. Rosenfeld,et al.  A pituitary POU domain protein, Pit-1, activates both growth hormone and prolactin promoters transcriptionally. , 1989, Genes & development.

[18]  Roger Brent,et al.  DNA specificity of the bicoid activator protein is determined by homeodomain recognition helix residue 9 , 1989, Cell.

[19]  M. Scott,et al.  Transcriptional activation by the Antennapedia and fushi tarazu proteins in cultured Drosophila cells , 1989, Cell.

[20]  P. Sharp,et al.  The DNA-binding homeo domain of the Oct-2 protein. , 1989, Genes & development.

[21]  R. Roeder,et al.  Functional cooperativity between protein molecules bound at two distinct sequence elements of the immunoglobulin heavy-chain promoter , 1989, Nature.

[22]  R. Roeder,et al.  Octamer transcription factors 1 and 2 each bind to two different functional elements in the immunoglobulin heavy-chain promoter , 1989, Molecular and cellular biology.

[23]  S. McKnight,et al.  Eukaryotic transcriptional regulatory proteins. , 1989, Annual review of biochemistry.

[24]  M. Krasnow,et al.  An Ultrabithorax protein binds sequences near its own and the Antennapedia P1 promoters , 1988, Cell.

[25]  W. Herr,et al.  The POU domain is a bipartite DNA-binding structure , 1988, Nature.

[26]  R. Roeder,et al.  A human lymphoid- specific transcription factor that activates immunoglobulin genes is a homoeobox protein , 1988, Nature.

[27]  W. Schaffner,et al.  A cloned octamer transcription factor stimulates transcription from lymphoid–specific promoters in non–B cells , 1988, Nature.

[28]  H. Horvitz,et al.  The C. elegans cell lineage and differentiation gene unc-86 encodes a protein with a homeodomain and extended similarity to transcription factors , 1988, Cell.

[29]  R. Tjian,et al.  Analysis of Sp1 in vivo reveals mutiple transcriptional domains, including a novel glutamine-rich activation motif , 1988, Cell.

[30]  R. Evans,et al.  Multiple and cooperative trans-activation domains of the human glucocorticoid receptor , 1988, Cell.

[31]  K. Wüthrich,et al.  Secondary structure determination for the Antennapedia homeodomain by nuclear magnetic resonance and evidence for a helix‐turn‐helix motif. , 1988, The EMBO journal.

[32]  W. Herr,et al.  The ubiquitous octamer-binding protein Oct-1 contains a POU domain with a homeo box subdomain. , 1988, Genes & development.

[33]  K. Wüthrich,et al.  Isolation and sequence‐specific DNA binding of the Antennapedia homeodomain. , 1988, The EMBO journal.

[34]  P. Sharp,et al.  The B-cell-specific Oct-2 protein contains POU box- and homeo box-type domains. , 1988, Genes & development.

[35]  G. Ruvkun,et al.  The POU domain: a large conserved region in the mammalian pit-1, oct-1, oct-2, and Caenorhabditis elegans unc-86 gene products. , 1988, Genes & development.

[36]  H. Mihara,et al.  A chemically synthesized Antennapedia homeo domain binds to a specific DNA sequence , 1988, Science.

[37]  M. Rosenfeld,et al.  A tissue-specific transcription factor containing a homeodomain specifies a pituitary phenotype , 1988, Cell.

[38]  T. Deerinck,et al.  The pituitary-specific transcription factor GHF-1 is a homeobox-containing protein , 1988, Cell.

[39]  M. Levine,et al.  DNA-binding activities of the Drosophila melanogaster even-skipped protein are mediated by its homeo domain and influenced by protein context , 1988, Molecular and cellular biology.

[40]  L. Staudt,et al.  A human protein specific for the immunoglobulin octamer DNA motif contains a functional homeobox domain , 1988, Cell.

[41]  P. O’Farrell,et al.  The sequence specificity of homeodomain-DNA interaction , 1988, Cell.

[42]  P. Ingham The molecular genetics of embryonic pattern formation in Drosophila , 1988, Nature.

[43]  M. Levine,et al.  Divergent homeo box proteins recognize similar DNA sequences in Drosophila , 1988, Nature.

[44]  M. Rosenfeld,et al.  Activation of cell-specific expression of rat growth hormone and prolactin genes by a common transcription factor. , 1988, Science.

[45]  C. Glass,et al.  Response and binding elements for ligand-dependent positive transcription factors integrate positive and negative regulation of gene expression. , 1988, Cold Spring Harbor symposia on quantitative biology.

[46]  Sean B. Carroll,et al.  The segmentation and homeotic gene network in early Drosophila development , 1987, Cell.

[47]  D. Sigman,et al.  Footprinting DNA-protein complexes in situ following gel retardation assays using 1,10-phenanthroline-copper ion: Escherichia coli RNA polymerase-lac promoter complexes. , 1987, Biochemistry.

[48]  M. Hall,et al.  Homeo domain of the yeast repressor alpha 2 is a sequence-specific DNA-binding domain but is not sufficient for repression. , 1987, Science.

[49]  H. Okayama,et al.  High-efficiency transformation of mammalian cells by plasmid DNA. , 1987, Molecular and cellular biology.

[50]  W. Gehring,et al.  Homeo boxes in the study of development. , 1987, Science.

[51]  Kevin Struhl,et al.  Promoters, activator proteins, and the mechanism of transcriptional initiation in yeast , 1987, Cell.

[52]  K. Wood,et al.  Firefly luciferase gene: structure and expression in mammalian cells , 1987, Molecular and cellular biology.

[53]  C. Sunkel,et al.  Expression of the prokaryotic gene for chloramphenicol acetyl transferase in Drosophila under the control of larval serum protein 1 gene promoters. , 1986, Journal of molecular biology.

[54]  F. Studier,et al.  Use of bacteriophage T7 RNA polymerase to direct selective high-level expression of cloned genes. , 1986, Journal of molecular biology.

[55]  M. Ptashne A Genetic Switch , 1986 .

[56]  R. Brent,et al.  A eukaryotic transcriptional activator bearing the DNA specificity of a prokaryotic repressor , 1985, Cell.

[57]  Thomas A. Kunkel,et al.  Rapid and efficient site-specific mutagenesis without phenotypic selection. , 1985, Proceedings of the National Academy of Sciences of the United States of America.

[58]  A. Laughon,et al.  Sequence of a Drosophila segmentation gene: protein structure homology with DNA-binding proteins , 1984, Nature.

[59]  William McGinnis,et al.  A homologous protein-coding sequence in drosophila homeotic genes and its conservation in other metazoans , 1984, Cell.

[60]  W. J. Gehring,et al.  A conserved DNA sequence in homoeotic genes of the Drosophila Antennapedia and bithorax complexes , 1984, Nature.

[61]  F. Sanger,et al.  DNA sequencing with chain-terminating inhibitors. , 1977, Proceedings of the National Academy of Sciences of the United States of America.

[62]  P. Y. Chou,et al.  Prediction of protein conformation. , 1974, Biochemistry.

[63]  U. K. Laemmli,et al.  Cleavage of Structural Proteins during the Assembly of the Head of Bacteriophage T4 , 1970, Nature.