Highly efficient planar perovskite solar cells through band alignment engineering
暂无分享,去创建一个
Michael Grätzel | Anders Hagfeldt | Mohammad Khaja Nazeeruddin | Antonio Abate | Juan Pablo Correa Baena | Ludmilla Steier | Wolfgang Tress | Michael Saliba | Stefanie Neutzner | Taisuke Matsui | Fabrizio Giordano | T. Jesper Jacobsson | Ajay Ram Srimath Kandada | Shaik M. Zakeeruddin | Annamaria Petrozza | F. Giordano | S. Zakeeruddin | M. Grätzel | A. Hagfeldt | M. Nazeeruddin | Michael Saliba | A. Abate | W. Tress | A. Petrozza | L. Steier | J. C. Baena | S. Neutzner | A. R. S. Kandada | Taisuke Matsui | T. Jacobsson | S. M. Zakeeruddin | Stefanie Neutzner
[1] Konrad Wojciechowski,et al. C60 as an Efficient n-Type Compact Layer in Perovskite Solar Cells. , 2015, The journal of physical chemistry letters.
[2] Mohammad Khaja Nazeeruddin,et al. Predicting the Open‐Circuit Voltage of CH3NH3PbI3 Perovskite Solar Cells Using Electroluminescence and Photovoltaic Quantum Efficiency Spectra: the Role of Radiative and Non‐Radiative Recombination , 2015 .
[3] Wei Zhang,et al. Charge selective contacts, mobile ions and anomalous hysteresis in organic-inorganic perovskite solar cells , 2015 .
[4] Nakita K. Noel,et al. Anomalous Hysteresis in Perovskite Solar Cells. , 2014, The journal of physical chemistry letters.
[5] G. Alagic,et al. #p , 2019, Quantum Inf. Comput..
[6] Chiara Bertarelli,et al. 17.6% stabilized efficiency in low-temperature processed planar perovskite solar cells , 2015 .
[7] W. Marsden. I and J , 2012 .
[8] Cherie R. Kagan,et al. Organic-inorganic hybrid materials as semiconducting channels in thin-film field-effect transistors , 1999, Science.
[9] Henry J. Snaith,et al. Efficient planar heterojunction perovskite solar cells by vapour deposition , 2013, Nature.
[10] T. Miyasaka,et al. Low-temperature SnO2-based electron selective contact for efficient and stable perovskite solar cells , 2015 .
[11] S. Mhaisalkar,et al. Interfacial Electron Transfer Barrier at Compact TiO2 /CH3 NH3 PbI3 Heterojunction. , 2015, Small.
[12] J. Bisquert,et al. Electrical field profile and doping in planar lead halide perovskite solar cells , 2014 .
[13] Young Chan Kim,et al. Compositional engineering of perovskite materials for high-performance solar cells , 2015, Nature.
[14] Qi Chen,et al. Planar heterojunction perovskite solar cells via vapor-assisted solution process. , 2014, Journal of the American Chemical Society.
[15] Eric T. Hoke,et al. Hysteresis and transient behavior in current–voltage measurements of hybrid-perovskite absorber solar cells , 2014 .
[16] Hongwei Lei,et al. Low-temperature solution-processed tin oxide as an alternative electron transporting layer for efficient perovskite solar cells. , 2015, Journal of the American Chemical Society.
[17] Peng Gao,et al. Mesoscopic CH3NH3PbI3/TiO2 heterojunction solar cells. , 2012, Journal of the American Chemical Society.
[18] Junwang Tang,et al. Mesoporous SnO2 nanoparticle films as electron-transporting material in perovskite solar cells , 2015 .
[19] J. Luther,et al. Substrate-controlled band positions in CH₃NH₃PbI₃ perovskite films. , 2014, Physical chemistry chemical physics : PCCP.
[20] Garry Rumbles,et al. Heterojunction modification for highly efficient organic-inorganic perovskite solar cells. , 2014, ACS nano.
[21] Nripan Mathews,et al. Charge Accumulation and Hysteresis in Perovskite‐Based Solar Cells: An Electro‐Optical Analysis , 2015 .
[22] Martin A. Garrett. The LIGO Scientific Collaboration , 2010 .
[23] H. Bender,et al. AES and XPS analysis of the interaction of Ti with Si and SiO2 during RTA , 1989 .
[24] Sang Il Seok,et al. High-performance photovoltaic perovskite layers fabricated through intramolecular exchange , 2015, Science.
[25] A. Walker,et al. Influence of ionizing dopants on charge transport in organic semiconductors. , 2014, Physical chemistry chemical physics : PCCP.
[26] R. Marschall,et al. Semiconductor Composites: Strategies for Enhancing Charge Carrier Separation to Improve Photocatalytic Activity , 2014 .
[27] M. Grätzel,et al. Title: Long-Range Balanced Electron and Hole Transport Lengths in Organic-Inorganic CH3NH3PbI3 , 2017 .
[28] C. Sousa,et al. On the stability enhancement of cuprous oxide water splitting photocathodes by low temperature steam annealing , 2014 .
[29] Oleksandr Voznyy,et al. Perovskite–fullerene hybrid materials suppress hysteresis in planar diodes , 2015, Nature Communications.
[30] J. Teuscher,et al. Efficient Hybrid Solar Cells Based on Meso-Superstructured Organometal Halide Perovskites , 2012, Science.
[31] J. Bisquert,et al. Defect migration in methylammonium lead iodide and its role in perovskite solar cell operation , 2015 .
[32] J. Teuscher,et al. Lithium salts as "redox active" p-type dopants for organic semiconductors and their impact in solid-state dye-sensitized solar cells. , 2013, Physical chemistry chemical physics : PCCP.
[33] Henry J. Snaith,et al. Solution Deposition‐Conversion for Planar Heterojunction Mixed Halide Perovskite Solar Cells , 2014 .
[34] Hong Zhang,et al. Insight into Perovskite Solar Cells Based on SnO 2 Compact Electron- Selective Layer , 2015 .
[35] Oliver Bendel. [E] , 1896, Les noms officiels des communes de Wallonie, de Bruxelles-Capitale et de la communaute germanophone.
[36] Thomas Feurer,et al. High-Efficiency Polycrystalline Thin Film Tandem Solar Cells. , 2015, The journal of physical chemistry letters.
[37] Laura M. Herz,et al. Electron-Hole Diffusion Lengths Exceeding 1 Micrometer in an Organometal Trihalide Perovskite Absorber , 2013, Science.
[38] Edward H. Sargent,et al. A two-step route to planar perovskite cells exhibiting reduced hysteresis , 2015 .
[39] Tsutomu Miyasaka,et al. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. , 2009, Journal of the American Chemical Society.
[40] Mohammad Khaja Nazeeruddin,et al. Understanding the rate-dependent J–V hysteresis, slow time component, and aging in CH3NH3PbI3 perovskite solar cells: the role of a compensated electric field , 2015 .