On the Topology and Isotopic Meshing of Plane Algebraic Curves

This paper presents a symbolic algorithm to compute the topology of a plane curve. This is a full version of the authors' CASC15 paper. The algorithm mainly involves resultant computations and real root isolation for univariate polynomials. Compared to other symbolic methods based on elimination techniques, the novelty of the proposed method is that the authors use a technique of interval polynomials to solve the system $$\left\{ {f(\alpha ,y),\tfrac{{\partial f}}{{\partial y}}(\alpha ,y)} \right\}$$ { f ( α , y ) , ∂ f ∂ y ( α , y ) } and simultaneously obtain numerous simple roots of f ( α , y) = 0 on the α fiber. This significantly improves the efficiency of the lifting step because the authors are no longer required to compute the simple roots of f ( α , y) = 0. After the topology is computed, a revised Newton's method is presented to compute an isotopic meshing of the plane algebraic curve. Though the approximation method is numerical, the authors can ensure that the proposed method is a certified one, and the meshing is topologically correct. Several nontrivial examples confirm that the proposed algorithm performs well.

[1]  Robert M. Corless,et al.  Computing the topology of a real algebraic plane curve whose defining equations are available only "by values" , 2013, Comput. Aided Geom. Des..

[2]  Xiao-Shan Gao,et al.  On the Topology and Visualization of Plane Algebraic Curves , 2015, CASC.

[3]  Gert Vegter,et al.  Isotopic meshing of implicit surfaces , 2006, The Visual Computer.

[4]  Scott McCallum,et al.  A Polynomial-Time Algorithm for the Topological Type of a Real Algebraic Curve , 1984, J. Symb. Comput..

[5]  Changbo Chen,et al.  A Continuation Method for Visualizing Planar Real Algebraic Curves with Singularities , 2018, CASC.

[6]  B. Mourrain,et al.  Subdivision Methods for the Topology of 2d and 3d Implicit Curves , 2008 .

[7]  Laureano González-Vega,et al.  Efficient topology determination of implicitly defined algebraic plane curves , 2002, Comput. Aided Geom. Des..

[8]  Xiao-Shan Gao,et al.  Topology determination and isolation for implicit plane curves , 2009, SAC '09.

[9]  Jon G. Rokne,et al.  Scci-hybrid Methods for 2d Curve Tracing , 2005, Int. J. Image Graph..

[10]  T. Sakkalis The topological configuration of a real algebraic curve , 1991, Bulletin of the Australian Mathematical Society.

[11]  George E. Collins,et al.  Cylindrical Algebraic Decomposition I: The Basic Algorithm , 1984, SIAM J. Comput..

[12]  Michael Kerber,et al.  Exact and efficient 2D-arrangements of arbitrary algebraic curves , 2008, SODA '08.

[13]  Ralph R. Martin,et al.  Comparison of interval methods for plotting algebraic curves , 2002, Comput. Aided Geom. Des..

[14]  Laureano González-Vega,et al.  An Improved Upper Complexity Bound for the Topology Computation of a Real Algebraic Plane Curve , 1996, J. Complex..

[15]  Rida T. Farouki,et al.  Singular Points of Algebraic Curves , 1990, J. Symb. Comput..

[16]  Alkiviadis G. Akritas,et al.  Polynomial real root isolation using Descarte's rule of signs , 1976, SYMSAC '76.

[17]  William Fulton,et al.  Introduction to Intersection Theory in Algebraic Geometry , 1984 .

[18]  George E. Collins,et al.  An Adjacency Algorithm for Cylindrical Algebraic Decompositions of Three-Dimensional Space , 1988, J. Symb. Comput..

[19]  Daniel Lazard CAD and Topology of Semi-Algebraic Sets , 2010, Math. Comput. Sci..

[20]  Alkiviadis G. Akritas,et al.  An implementation of Vincent's theorem , 1980 .

[21]  Xiao-Shan Gao,et al.  Complete numerical isolation of real zeros in zero-dimensional triangular systems , 2007, ISSAC '07.

[22]  David A. Forsyth,et al.  Generalizing motion edits with Gaussian processes , 2009, ACM Trans. Graph..

[23]  C. Yap,et al.  Amortized Bound for Root Isolation via Sturm Sequences , 2007 .

[24]  Xiao-Shan Gao,et al.  Determining the Topology of Real Algebraic Surfaces , 2005, IMA Conference on the Mathematics of Surfaces.

[25]  Michael Sagraloff,et al.  When Newton meets Descartes: a simple and fast algorithm to isolate the real roots of a polynomial , 2011, ISSAC.

[26]  John M. Snyder,et al.  Interval analysis for computer graphics , 1992, SIGGRAPH.

[27]  Fabrice Rouillier,et al.  On the computation of the topology of plane curves , 2014, ISSAC.

[28]  William E. Lorensen,et al.  Marching cubes: A high resolution 3D surface construction algorithm , 1987, SIGGRAPH.

[29]  Abel J. P. Gomes,et al.  A BSP-based algorithm for dimensionally nonhomogeneous planar implicit curves with topological guarantees , 2009, TOGS.

[30]  G. E. Collins,et al.  Real Zeros of Polynomials , 1983 .

[31]  Shuhong Gao,et al.  The Complexity of an Adaptive Subdivision Method for Approximating Real Curves , 2017, ISSAC.

[32]  P. Zimmermann,et al.  Efficient isolation of polynomial's real roots , 2004 .

[33]  Michael Sagraloff,et al.  Arrangement computation for planar algebraic curves , 2011, SNC '11.

[34]  Xiao-Shan Gao,et al.  Rational quadratic approximation to real algebraic curves , 2004, Comput. Aided Geom. Des..

[35]  Oliver Labs A List of Challenges for Real Algebraic Plane Curve Visualization Software , 2009 .

[36]  Yufu Chen,et al.  Finding the topology of implicitly defined two algebraic plane curves , 2012, J. Syst. Sci. Complex..

[37]  George E. Collins,et al.  Cylindrical Algebraic Decomposition II: An Adjacency Algorithm for the Plane , 1984, SIAM J. Comput..

[38]  R. Baker Kearfott,et al.  Introduction to Interval Analysis , 2009 .

[39]  H. Hong An efficient method for analyzing the topology of plane real algebraic curves , 1996 .

[40]  Anton Leykin,et al.  Robust Certified Numerical Homotopy Tracking , 2011, Foundations of Computational Mathematics.

[41]  Bernard Mourrain,et al.  Topology and arrangement computation of semi-algebraic planar curves , 2008, Comput. Aided Geom. Des..

[42]  Kai Jin,et al.  A generic position based method for real root isolation of zero-dimensional polynomial systems , 2013, J. Symb. Comput..

[43]  Tamal K. Dey,et al.  Sampling and meshing a surface with guaranteed topology and geometry , 2004, SCG '04.

[44]  B. Mourrain,et al.  Algebraic Issues in Computational Geometry , 2006 .

[45]  Chee-Keng Yap,et al.  Complete subdivision algorithms, II: isotopic meshing of singular algebraic curves , 2008, ISSAC '08.

[46]  Ioannis Z. Emiris,et al.  On the asymptotic and practical complexity of solving bivariate systems over the reals , 2009, J. Symb. Comput..

[47]  Michael Kerber,et al.  Fast and exact geometric analysis of real algebraic plane curves , 2007, ISSAC '07.

[48]  Fabrice Rouillier,et al.  On the Topology of Real Algebraic Plane Curves , 2010, Math. Comput. Sci..

[49]  Raimund Seidel,et al.  On the exact computation of the topology of real algebraic curves , 2005, SCG.

[50]  Tien-Yien Li Numerical Solution of Polynomial Systems by Homotopy Continuation Methods , 2003 .

[51]  Xiao-Shan Gao,et al.  Multiplicity-preserving triangular set decomposition of two polynomials , 2011, J. Syst. Sci. Complex..