Partial intrinsic reflectional symmetry of 3D shapes

While many 3D objects exhibit various forms of global symmetries, prominent intrinsic symmetries which exist only on parts of an object are also well recognized. Such partial symmetries are often seen as more natural than a global one, even when the symmetric parts are under complex pose. We introduce an algorithm to extract partial intrinsic reflectional symmetries (PIRS) of a 3D shape. Given a closed 2-manifold mesh, we develop a voting scheme to obtain an intrinsic reflectional symmetry axis (IRSA) transform, which is a scalar field over the mesh that accentuates prominent IRSAs of the shape. We then extract a set of explicit IRSA curves on the shape based on a refined measure of local reflectional symmetry support along a curve. The iterative refinement procedure combines IRSA-induced region growing and region-constrained symmetry support refinement to improve accuracy and address potential issues arising from rotational symmetries in the shape. We show how the extracted IRSA curves can be incorporated into a conventional mesh segmentation scheme so that the implied symmetry cues can be utilized to obtain more meaningful results. We also demonstrate the use of IRSA curves for symmetry-driven part repair.

[1]  Cohen-OrDaniel,et al.  Consistent mesh partitioning and skeletonisation using the shape diameter function , 2008 .

[2]  M. Leyton Symmetry, Causality, Mind , 1999 .

[3]  Evangelos Kalogerakis,et al.  Folding meshes: hierarchical mesh segmentation based on planar symmetry , 2006, SGP '06.

[4]  Daphna Weinshall,et al.  Using Bilateral Symmetry to Improve 3D Reconstruction from Image Sequences , 1997, Comput. Vis. Image Underst..

[5]  Szymon Rusinkiewicz,et al.  Eurographics Symposium on Geometry Processing (2007) Symmetry-enhanced Remeshing of Surfaces , 2022 .

[6]  Szymon Rusinkiewicz,et al.  Symmetry descriptors and 3D shape matching , 2004, SGP '04.

[7]  Leonidas J. Guibas,et al.  Discovering structural regularity in 3D geometry , 2008, ACM Trans. Graph..

[8]  Hao Zhang,et al.  Mesh Segmentation via Spectral Embedding and Contour Analysis , 2007, Comput. Graph. Forum.

[9]  Jan-Olof Eklundh,et al.  Detecting Symmetry and Symmetric Constellations of Features , 2006, ECCV.

[10]  Bernard Chazelle,et al.  A Reflective Symmetry Descriptor for 3D Models , 2003, Algorithmica.

[11]  Anne Verroust-Blondet,et al.  A novel method for alignment of 3D models , 2008, 2008 IEEE International Conference on Shape Modeling and Applications.

[12]  Raif M. Rustamov,et al.  Augmented planar reflective symmetry transform , 2008, The Visual Computer.

[13]  Kun Zhou,et al.  Mesh editing with poisson-based gradient field manipulation , 2004, ACM Trans. Graph..

[14]  John Hart,et al.  ACM Transactions on Graphics , 2004, SIGGRAPH 2004.

[15]  W. Köhler Gestalt psychology , 1967 .

[16]  Alexander M. Bronstein,et al.  Calculus of Nonrigid Surfaces for Geometry and Texture Manipulation , 2007, IEEE Transactions on Visualization and Computer Graphics.

[17]  Donald D. Hoffman,et al.  Salience of visual parts , 1997, Cognition.

[18]  Steven J. Gortler,et al.  Fast exact and approximate geodesics on meshes , 2005, ACM Trans. Graph..

[19]  Alfred M. Bruckstein,et al.  Partial Similarity of Objects, or How to Compare a Centaur to a Horse , 2009, International Journal of Computer Vision.

[20]  Thomas A. Funkhouser,et al.  A benchmark for 3D mesh segmentation , 2009, ACM Trans. Graph..

[21]  Hans-Peter Seidel,et al.  Symmetry Detection Using Line Features , 2009 .

[22]  Ron Kimmel,et al.  Bending invariant representations for surfaces , 2001, Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. CVPR 2001.

[23]  Michael Garland,et al.  Curvature maps for local shape comparison , 2005, International Conference on Shape Modeling and Applications 2005 (SMI' 05).

[24]  Donald D. Hoffman,et al.  Parts of recognition , 1984, Cognition.

[25]  Ron Kimmel,et al.  Generalized multidimensional scaling: A framework for isometry-invariant partial surface matching , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[26]  Ariel Shamir,et al.  Segmentation and Shape Extraction of 3D Boundary Meshes , 2006, Eurographics.

[27]  M. Golubitsky,et al.  Fearful Symmetry: Is God a Geometer? , 1992 .

[28]  Leonidas J. Guibas,et al.  Global Intrinsic Symmetries of Shapes , 2008, Comput. Graph. Forum.

[29]  Alexander M. Bronstein,et al.  Symmetries of non-rigid shapes , 2007, 2007 IEEE 11th International Conference on Computer Vision.

[30]  Kai Xu,et al.  Partial intrinsic reflectional symmetry of 3D shapes , 2009, SIGGRAPH 2009.

[31]  François X. Sillion,et al.  Accurate detection of symmetries in 3D shapes , 2006, TOGS.

[32]  Sebastian Thrun,et al.  Shape from symmetry , 2005, Tenth IEEE International Conference on Computer Vision (ICCV'05) Volume 1.

[33]  Michael Leyton,et al.  A generative theory of shape , 2004, Proceedings Shape Modeling Applications, 2004..

[34]  Hans-Peter Kriegel,et al.  A Density-Based Algorithm for Discovering Clusters in Large Spatial Databases with Noise , 1996, KDD.

[35]  Mikhail J. Atallah,et al.  On Symmetry Detection , 1985, IEEE Transactions on Computers.

[36]  Radomír Mech,et al.  Detecting Symmetries and Curvilinear Arrangements in Vector Art , 2009, Comput. Graph. Forum.

[37]  John Stillwell,et al.  Symmetry , 2000, Am. Math. Mon..

[38]  Daniel Cohen-Or,et al.  Salient geometric features for partial shape matching and similarity , 2006, TOGS.

[39]  Raif M. Rustamov,et al.  Laplace-Beltrami eigenfunctions for deformation invariant shape representation , 2007 .

[40]  Nahum Kiryati,et al.  Segmentation by Level Sets and Symmetry , 2006, 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06).

[41]  Thomas A. Funkhouser,et al.  Symmetry-Aware Mesh Processing , 2009, IMA Conference on the Mathematics of Surfaces.

[42]  Bernard Chazelle,et al.  A Reflective Symmetry Descriptor , 2002, ECCV.

[43]  Richard A. Volz,et al.  Optimal algorithms for symmetry detection in two and three dimensions , 1985, The Visual Computer.