Harmonic‐Resonator‐Based Triboelectric Nanogenerator as a Sustainable Power Source and a Self‐Powered Active Vibration Sensor

A harmonic-resonator-based triboelectric nanogenerator (TENG) is presented as a sustainable power source and an active vibration sensor. It can effectively respond to vibration frequencies ranging from 2 to 200 Hz with a considerably wide working bandwidth of 13.4 Hz. This work not only presents a new principle in the field of vibration energy harvesting but also greatly expands the applicability of TENGs.

[1]  Zhong Lin Wang,et al.  Integrated multilayered triboelectric nanogenerator for harvesting biomechanical energy from human motions. , 2013, ACS nano.

[2]  Wei Wang,et al.  Frequency-multiplication high-output triboelectric nanogenerator for sustainably powering biomedical microsystems. , 2013, Nano letters.

[3]  Lei Wang,et al.  Vibration energy harvesting by magnetostrictive material , 2008 .

[4]  Zhong Lin Wang,et al.  Direct-Current Nanogenerator Driven by Ultrasonic Waves , 2007, Science.

[5]  Zhong Lin Wang,et al.  Segmentally structured disk triboelectric nanogenerator for harvesting rotational mechanical energy. , 2013, Nano letters.

[6]  Zhong Lin Wang,et al.  Piezoelectric Nanogenerators Based on Zinc Oxide Nanowire Arrays , 2006, Science.

[7]  Zhong Lin Wang,et al.  Transparent triboelectric nanogenerators and self-powered pressure sensors based on micropatterned plastic films. , 2012, Nano letters.

[8]  S. Beeby,et al.  Energy harvesting vibration sources for microsystems applications , 2006 .

[9]  Zhong Lin Wang,et al.  Linear-grating triboelectric generator based on sliding electrification. , 2013, Nano letters.

[10]  Fuh-Gwo Yuan,et al.  A magnetically levitated vibration energy harvester , 2013 .

[11]  R. Horn,et al.  Contact electrification induced by monolayer modification of a surface and relation to acid–base interactions , 1993, Nature.

[12]  Yaowen Yang,et al.  A nonlinear piezoelectric energy harvester with magnetic oscillator , 2012 .

[13]  S. H. Kim,et al.  Micromachined PZT cantilever based on SOI structure for low frequency vibration energy harvesting , 2009 .

[14]  R. Horn,et al.  Contact Electrification and Adhesion Between Dissimilar Materials , 1992, Science.

[15]  Jing Qiu,et al.  A magnetoelectric energy harvester with the magnetic coupling to enhance the output performance , 2012 .

[16]  K. Najafi,et al.  Energy Scavenging From Low-Frequency Vibrations by Using Frequency Up-Conversion for Wireless Sensor Applications , 2008, IEEE Sensors Journal.

[17]  Zhong Lin Wang,et al.  Toward large-scale energy harvesting by a nanoparticle-enhanced triboelectric nanogenerator. , 2013, Nano letters.

[18]  Zhong Lin Wang,et al.  Flexible triboelectric generator , 2012 .

[19]  Bernard H. Stark,et al.  MEMS electrostatic micropower generator for low frequency operation , 2004 .

[20]  Long Lin,et al.  Nanoscale triboelectric-effect-enabled energy conversion for sustainably powering portable electronics. , 2012, Nano letters.

[21]  Z. Baharudin,et al.  Erratum: A wideband, frequency up-converting bounded vibration energy harvester for a low frequency environment , 2013 .

[22]  G.S.P. Castle,et al.  Contact charging between insulators , 1997 .

[23]  Swee Leong Kok,et al.  SUSTAINABLE ENERGY HARVESTING TECHNOLOGIES – PAST,PRESENT AND FUTURE , 2011 .

[24]  Caofeng Pan,et al.  Triboelectric-generator-driven pulse electrodeposition for micropatterning. , 2012, Nano letters.

[25]  Zhong Lin Wang,et al.  Self-powered nanowire devices. , 2010, Nature nanotechnology.

[26]  Zhong Lin Wang,et al.  Microfibre–nanowire hybrid structure for energy scavenging , 2008, Nature.

[27]  Frank Simon,et al.  Polymer tribo-electric charging: dependence on thermodynamic surface properties and relative humidity , 2003 .

[28]  Zhong Lin Wang,et al.  Sliding-triboelectric nanogenerators based on in-plane charge-separation mechanism. , 2013, Nano letters.

[29]  Zhong Lin Wang,et al.  Power generation with laterally packaged piezoelectric fine wires. , 2009, Nature nanotechnology.