Cry4Ba and Cyt1Aa proteins from Bacillus thuringiensis israelensis: Interactions and toxicity mechanism against Aedes aegypti.

[1]  J. Torres,et al.  A conserved tetrameric interaction of cry toxin helix α3 suggests a functional role for toxin oligomerization. , 2014, Biochimica et biophysica acta.

[2]  S. Jaoua,et al.  New Bacillus thuringiensis toxin combinations for biological control of lepidopteran larvae. , 2014, International journal of biological macromolecules.

[3]  E. Ben-Dov,et al.  Bacillus thuringiensis subsp. israelensis and Its Dipteran-Specific Toxins , 2014, Toxins.

[4]  S. Gill,et al.  Membrane binding and oligomer membrane insertion are necessary but insufficient for Bacillus thuringiensis Cyt1Aa toxicity , 2014, Peptides.

[5]  M. Wirth Mosquito Resistance to Bacterial Larvicidal Toxins , 2013 .

[6]  Isabel Gómez,et al.  Evolution of Bacillus thuringiensis Cry toxins insecticidal activity , 2013, Microbial biotechnology.

[7]  M. Adang,et al.  Proteome analysis of Cry4Ba toxin-interacting Aedes aegypti lipid rafts using geLC-MS/MS. , 2012, Journal of proteome research.

[8]  O. Dym,et al.  Cyt1Aa toxin: crystal structure reveals implications for its membrane-perforating function. , 2011, Journal of molecular biology.

[9]  N. Ayyadurai,et al.  Synergistic activity of Cyt1A from Bacillus thuringiensis subsp. israelensis with Bacillus sphaericus B101 H5a5b against Bacillus sphaericus B101 H5a5b-resistant strains of Anopheles stephensi Liston (Diptera: Culicidae) , 2011, Parasitology Research.

[10]  S. Gill,et al.  Bacillus thuringiensis: A story of a successful bioinsecticide. , 2011, Insect biochemistry and molecular biology.

[11]  V. Sanchis From microbial sprays to insect-resistant transgenic plants: history of the biospesticide Bacillus thuringiensis. A review , 2011, Agronomy for Sustainable Development.

[12]  M. Soberón,et al.  Binding of Bacillus thuringiensis subsp. israelensis Cry4Ba to Cyt1Aa has an important role in synergism , 2011, Peptides.

[13]  S. Jaoua,et al.  Study of the Bacillus thuringiensis Vip3Aa16 histopathological effects and determination of its putative binding proteins in the midgut of Spodoptera littoralis. , 2011, Journal of invertebrate pathology.

[14]  G. Katzenmeier,et al.  Crystallization and preliminary X-ray crystallographic analysis of a full-length active form of the Cry4Ba toxin from Bacillus thuringiensis. , 2010, Acta crystallographica. Section F, Structural biology and crystallization communications.

[15]  M. Soberón,et al.  Role of Alkaline Phosphatase from Manduca sexta in the Mechanism of Action of Bacillus thuringiensis Cry1Ab Toxin* , 2010, The Journal of Biological Chemistry.

[16]  A. Holzenburg,et al.  Characterization of the mechanism of action of the genetically modified Cry1AbMod toxin that is active against Cry1Ab-resistant insects. , 2009, Biochimica et biophysica acta.

[17]  M. Adang,et al.  Proteomic identification of Bacillus thuringiensis subsp. israelensis toxin Cry4Ba binding proteins in midgut membranes from Aedes (Stegomyia) aegypti Linnaeus (Diptera, Culicidae) larvae. , 2009, Insect biochemistry and molecular biology.

[18]  S. Gill,et al.  Enhancement of insecticidal activity of Bacillus thuringiensis Cry1A toxins by fragments of a toxin-binding cadherin correlates with oligomer formation , 2009, Peptides.

[19]  S. Gill,et al.  Signaling versus punching hole: How do Bacillus thuringiensis toxins kill insect midgut cells? , 2009, Cellular and Molecular Life Sciences.

[20]  A. Zaritsky,et al.  Variations in the mosquito larvicidal activities of toxins from Bacillus thuringiensis ssp. israelensis. , 2008, Environmental microbiology.

[21]  Hana Trigui,et al.  Evidence of the Importance of the Met115 for Bacillus thuringiensis subsp. israelensis Cyt1Aa Protein Cytolytic Activity in Escherichia coli , 2008, Molecular biotechnology.

[22]  S. Gill,et al.  Bacillus thuringiensis ssp. israelensis Cyt1Aa enhances activity of Cry11Aa toxin by facilitating the formation of a pre‐pore oligomeric structure , 2007, Cellular microbiology.

[23]  F. Sigworth,et al.  Two conformational states of the membrane-associated Bacillus thuringiensis Cry4Ba delta-endotoxin complex revealed by electron crystallography: implications for toxin-pore formation. , 2007, Biochemical and biophysical research communications.

[24]  G. Saab-Rincón,et al.  Bacillus thuringiensis Cry1Ab Mutants Affecting Oligomer Formation Are Non-toxic to Manduca sexta Larvae* , 2007, Journal of Biological Chemistry.

[25]  S. Gill,et al.  Mode of action of Bacillus thuringiensis Cry and Cyt toxins and their potential for insect control. , 2007, Toxicon : official journal of the International Society on Toxinology.

[26]  Ming Liu,et al.  Cytolytic Toxin Cyt1Aa of Bacillus thuringiensis Synergizes the Mosquitocidal Toxin Mtx1 of Bacillus sphaericus , 2006, Bioscience, biotechnology, and biochemistry.

[27]  S. Jaoua,et al.  Characterization of a cry4Ba‐type gene of Bacillus thuringiensis israelensis and evidence of the synergistic larvicidal activity of its encoded protein with Cry2A δ‐endotoxin of B. thuringiensis kurstaki on Culex pipiens (common house mosquito) , 2006, Biotechnology and applied biochemistry.

[28]  S. Gill,et al.  Bacillus thuringiensis subsp. israelensis Cyt1Aa synergizes Cry11Aa toxin by functioning as a membrane-bound receptor. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[29]  M. Parker,et al.  Pore-forming protein toxins: from structure to function. , 2005, Progress in biophysics and molecular biology.

[30]  P. Davis,et al.  Crystal structure of the mosquito-larvicidal toxin Cry4Ba and its biological implications. , 2005, Journal of molecular biology.

[31]  D. Ellar,et al.  Structure-function relationships of a membrane pore forming toxin revealed by reversion mutagenesis , 2005, Molecular membrane biology.

[32]  B. Federici,et al.  Cyt1A of Bacillus thuringiensis Delays Evolution of Resistance to Cry11A in the Mosquito Culex quinquefasciatus , 2005, Applied and Environmental Microbiology.

[33]  M. Soberón,et al.  Unfolding Events in the Water-soluble Monomeric Cry1Ab Toxin during Transition to Oligomeric Pre-pore and Membrane-inserted Pore Channel* , 2004, Journal of Biological Chemistry.

[34]  S. Gill,et al.  Oligomerization triggers binding of a Bacillus thuringiensis Cry1Ab pore-forming toxin to aminopeptidase N receptor leading to insertion into membrane microdomains. , 2004, Biochimica et biophysica acta.

[35]  W. Walton,et al.  Deletion of the Cry11A or the Cyt1A toxin from Bacillus thuringiensis subsp. israelensis: effect on toxicity against resistant Culex quinquefasciatus (Diptera: Culicidae). , 2003, Journal of invertebrate pathology.

[36]  R. D. de Maagd,et al.  Bacillus thuringiensis Delta-Endotoxin Cry1 Hybrid Proteins with Increased Activity against the Colorado Potato Beetle , 2001, Applied and Environmental Microbiology.

[37]  B. Federici,et al.  Construction and characterization of a recombinant Bacillus thuringiensis subsp. israelensis strain that produces Cry11B. , 2001, Journal of invertebrate pathology.

[38]  D. Ellar,et al.  Membrane pore architecture of a cytolytic toxin from Bacillus thuringiensis. , 2000, The Biochemical journal.

[39]  B. H. Knowles,et al.  Biochemical characterization of Bacillus thuringiensis cytolytic toxins in association with a phospholipid bilayer. , 1999, The Biochemical journal.

[40]  N. Crickmore,et al.  Bacillus thuringiensis and Its Pesticidal Crystal Proteins , 1998, Microbiology and Molecular Biology Reviews.

[41]  B. Oppert,et al.  Spore Coat Protein Synergizes Bacillus thuringiensis Crystal Toxicity for the Indianmeal Moth (Plodia interpunctella) , 1998, Current Microbiology.

[42]  B. Tabashnik,et al.  Synergism between Bacillus thuringiensis Spores and Toxins against Resistant and Susceptible Diamondback Moths (Plutella xylostella) , 1998, Applied and Environmental Microbiology.

[43]  G. Georghiou,et al.  CytA enables CryIV endotoxins of Bacillus thuringiensis to overcome high levels of CryIV resistance in the mosquito, Culex quinquefasciatus. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[44]  M. C. Tamayo,et al.  Identification of a gene for Cyt1A-like hemolysin from Bacillus thuringiensis subsp. medellin and expression in a crystal-negative B. thuringiensis strain , 1997, Applied and environmental microbiology.

[45]  J. Williams,et al.  Contribution of the individual components of the δ-endotoxin crystal to the mosquitocidal activity of Bacillus thuringiensis subsp. israelensis , 1995 .

[46]  B. Tabashnik Evaluation of synergism among Bacillus thuringiensis toxins , 1992, Applied and environmental microbiology.

[47]  Phyllis A. W. Martin,et al.  Selective Process for Efficient Isolation of Soil Bacillus spp , 1987, Applied and environmental microbiology.

[48]  G. Rapoport,et al.  Characterization of the genes encoding the haemolytic toxin and the mosquitocidal delta-endotoxin of Bacillus thuringiensis israelensis , 1986, Molecular and General Genetics MGG.

[49]  D. Dame,et al.  U.S. Standard Bioassay for the Potency Assessment of Bacillus thuringiensis Serotype H-14 Against Mosquito Larvae , 1984 .

[50]  S. Panda,et al.  Results and discussion , 1977, Sustainable Governance of Natural Resources.

[51]  M. M. Bradford A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. , 1976, Analytical biochemistry.

[52]  Alison Willis,et al.  Mode of Action , 2014 .

[53]  D. Bideshi,et al.  Cyt1Aa from Bacillus thuringiensis subsp. israelensis enhances mosquitocidal activity of B. thuringiensis subsp. kurstaki HD-1 against Aedes aegypti but not Culex quinquefasciatus. , 2013, Journal of microbiology and biotechnology.

[54]  Mary Elizabeth Swift-Taylor Characterization of the mechanism of action of Transportin in mitotic spindle assembly - eScholarship , 2011 .

[55]  M. Silva-Filha,et al.  Interaction of Bacillus thuringiensis svar. israelensis Cry toxins with binding sites from Aedes aegypti (Diptera: Culicidae) larvae midgut. , 2007, FEMS microbiology letters.

[56]  G. Katzenmeier,et al.  Asn183 in alpha5 is essential for oligomerisation and toxicity of the Bacillus thuringiensis Cry4Ba toxin. , 2006, Archives of biochemistry and biophysics.

[57]  A. Timperman,et al.  Proteome analysis. , 2004, Methods in molecular biology.

[58]  Kostas Iatrou,et al.  comprehensive molecular insect science , 2004 .

[59]  E. Ben-Dov,et al.  Biological Control by Bacillus thuringiensis subsp. israelensis , 2000 .